Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.605
1.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710921

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
2.
WMJ ; 123(2): 144-146, 2024 May.
Article En | MEDLINE | ID: mdl-38718248

INTRODUCTION: Tarka (trandolapril/verapamil hydrohloride extended-release) is a fixed-dose combination antihypertensive drug formed from verapamil hydrochloride and trandolapril. Toxicologic manifestations of Tarka overdose are altered mental status, bradycardia, hypotension, atrioventricular block (first-degree), hyperglycemia, metabolic acidosis, and shock. CASE PRESENTATION: We report a case of Tarka toxicity in a 2-year-old girl who presented with altered mental status, cardiogenic shock, hypotension, bradycardia, severe metabolic acidosis, hyperglycemia, and first-degree atrioventricular block. We started fluid resuscitation, epinephrine, norepinephrine, and insulin. Because of the patient's hyperlactatemia and hypotension despite standard therapies, we initiated intravenous lipid emulsion (ILE) therapy, after which her condition improved promptly. DISCUSSION: Tarka overdose may be life-threatening as it can cause cardiogenic shock. In our patient, the regression of lactate elevation in a short time with ILE therapy and the improvement of her general condition highlight the importance of ILE. CONCLUSIONS: ILE is an alternative treatment method for acute lipophilic drug intoxications, such as Tarka.


Drug Overdose , Fat Emulsions, Intravenous , Insulin , Verapamil , Humans , Female , Fat Emulsions, Intravenous/therapeutic use , Insulin/poisoning , Drug Overdose/therapy , Drug Overdose/drug therapy , Verapamil/poisoning , Child, Preschool , Drug Combinations , Antihypertensive Agents/poisoning , Hypoglycemic Agents/poisoning , Indoles
3.
Sci Rep ; 14(1): 11720, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778154

We studied the inhibitory actions of docosahexaenoic acid (DHA) on the contractions induced by carbachol (CCh), angiotensin II (Ang II), and bradykinin (BK) in guinea pig (GP) gastric fundus smooth muscle (GFSM), particularly focusing on the possible inhibition of store-operated Ca2+ channels (SOCCs). DHA significantly suppressed the contractions induced by CCh, Ang II, and BK; the inhibition of BK-induced contractions was the strongest. Although all contractions were greatly dependent on external Ca2+, more than 80% of BK-induced contractions remained even in the presence of verapamil, a voltage-dependent Ca2+ channel inhibitor. BK-induced contractions in the presence of verapamil were not suppressed by LOE-908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) but were suppressed by SKF-96365 (an SOCC and ROCC inhibitor). BK-induced contractions in the presence of verapamil plus LOE-908 were strongly inhibited by DHA. Furthermore, DHA inhibited GFSM contractions induced by cyclopiazonic acid (CPA) in the presence of verapamil plus LOE-908 and inhibited the intracellular Ca2+ increase due to Ca2+ addition in CPA-treated 293T cells. These findings indicate that Ca2+ influx through SOCCs plays a crucial role in BK-induced contraction in GP GFSM and that this inhibition by DHA is a new mechanism by which this fatty acid inhibits GFSM contractions.


Angiotensin II , Bradykinin , Carbachol , Docosahexaenoic Acids , Gastric Fundus , Muscle Contraction , Muscle, Smooth , Animals , Guinea Pigs , Docosahexaenoic Acids/pharmacology , Bradykinin/pharmacology , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Carbachol/pharmacology , Muscle Contraction/drug effects , Angiotensin II/pharmacology , Gastric Fundus/drug effects , Gastric Fundus/physiology , Gastric Fundus/metabolism , Verapamil/pharmacology , Calcium/metabolism , Male , Humans , Calcium Channels/metabolism , HEK293 Cells , Calcium Channel Blockers/pharmacology , Imidazoles/pharmacology
4.
Ann Clin Microbiol Antimicrob ; 23(1): 36, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664815

BACKGROUND: Tuberculosis (TB) continues to pose a threat to communities worldwide and remains a significant public health issue in several countries. We assessed the role of heteroresistance and efflux pumps in bedaquiline (BDQ)-resistant Mycobacterium tuberculosis isolates. METHODS: Nineteen clinical isolates were included in the study, of which fifteen isolates were classified as MDR or XDR, while four isolates were fully susceptible. To evaluate BDQ heteroresistance, the Microplate Alamar Blue Assay (MABA) method was employed. For screening mixed infections, MIRU-VNTR was performed on clinical isolates. Mutations in the atpE and Rv0678 genes were determined based on next-generation sequencing data. Additionally, real-time PCR was applied to assess the expression of efflux pump genes in the absence and presence of verapamil (VP). RESULTS: All 15 drug-resistant isolates displayed resistance to BDQ. Among the 19 total isolates, 21.05% (4/19) exhibited a heteroresistance pattern to BDQ. None of the isolates carried a mutation of the atpE and Rv0678 genes associated with BDQ resistance. Regarding the MIRU-VNTR analysis, most isolates (94.73%) showed the Beijing genotype. Fifteen (78.9%) isolates showed a significant reduction in BDQ MIC after VP treatment. The efflux pump genes of Rv0676c, Rv1258c, Rv1410c, Rv1634, Rv1819, Rv2459, Rv2846, and Rv3065 were overexpressed in the presence of BDQ. CONCLUSIONS: Our results clearly demonstrated the crucial role of heteroresistance and efflux pumps in BDQ resistance. Additionally, we established a direct link between the Rv0676c gene and BDQ resistance. The inclusion of VP significantly reduced the MIC of BDQ in both drug-susceptible and drug-resistant clinical isolates.


Antitubercular Agents , Diarylquinolines , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Diarylquinolines/pharmacology , Humans , Antitubercular Agents/pharmacology , Iran , Tuberculosis, Multidrug-Resistant/microbiology , Mutation , Membrane Transport Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Verapamil/pharmacology
5.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Article En | MEDLINE | ID: mdl-38678669

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Flavones , Lipopolysaccharides , STAT1 Transcription Factor , STAT3 Transcription Factor , Suppressor of Cytokine Signaling 3 Protein , Verapamil , Animals , Verapamil/pharmacology , STAT1 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Flavones/pharmacology , Flavones/therapeutic use , Mice , STAT3 Transcription Factor/metabolism , Male , Sepsis/drug therapy , Sepsis/immunology , Sepsis/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Down-Regulation/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Cells, Cultured , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Signal Transduction/drug effects , Up-Regulation/drug effects
6.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Article En | MEDLINE | ID: mdl-38563869

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Anti-Bacterial Agents , Calcium Channel Blockers , Calcium , Gentamicins , Hair Cells, Auditory , Neomycin , Verapamil , Zebrafish , Animals , Calcium Channel Blockers/pharmacology , Calcium/metabolism , Verapamil/pharmacology , Neomycin/toxicity , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Gentamicins/toxicity , Anti-Bacterial Agents/toxicity , Reactive Oxygen Species/metabolism , Ototoxicity/prevention & control , Aminoglycosides/toxicity , Lateral Line System/drug effects , Larva/drug effects , Hearing Loss/chemically induced , Hearing Loss/prevention & control
7.
Antimicrob Agents Chemother ; 68(5): e0134823, 2024 May 02.
Article En | MEDLINE | ID: mdl-38572960

Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.


Anti-Bacterial Agents , Levofloxacin , Microbial Sensitivity Tests , Mycobacterium abscessus , Reserpine , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Reserpine/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Verapamil/pharmacology
8.
Pharmacogenomics J ; 24(3): 11, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594235

OBJECTIVE: To investigate factors affecting the efficacy and tolerability of verapamil for migraine prevention using individual pharmacogenomic phenotypes. BACKGROUND: Verapamil has a wide range of dosing in headache disorders without reliable tools to predict the optimal doses for an individual. METHODS: This is a retrospective chart review examining adults with existing pharmacogenomic reports at Mayo Clinic who had used verapamil for migraine. Effects of six cytochrome P450 phenotypes on the doses of verapamil for migraine prevention were assessed. RESULTS: Our final analysis included 33 migraine patients (82% with aura). The mean minimum effective and maximum tolerable doses of verapamil were 178.2(20-320) mg and 227.9(20-480) mg. A variety of CYP2C9, CYP2D6, and CYP3A5 phenotypes were found, without significant association with the verapamil doses after adjusting for age, sex, body mass index, and smoking status. CONCLUSIONS: We demonstrated a wide range of effective and tolerable verapamil doses used for migraine in a cohort with various pharmacogenomic phenotypes.


Migraine Disorders , Verapamil , Adult , Humans , Pilot Projects , Verapamil/therapeutic use , Pharmacogenomic Testing , Pharmacogenetics , Retrospective Studies , Migraine Disorders/drug therapy , Migraine Disorders/genetics , Migraine Disorders/prevention & control , Phenotype
9.
J Pharmacol Toxicol Methods ; 126: 107498, 2024.
Article En | MEDLINE | ID: mdl-38432528

BACKGROUND AND PURPOSE: A recent paradigm shift in proarrhythmic risk assessment suggests that the integration of clinical, non-clinical, and computational evidence can be used to reach a comprehensive understanding of the proarrhythmic potential of drug candidates. While current computational methodologies focus on predicting the incidence of proarrhythmic events after drug administration, the objective of this study is to predict concentration-response relationships of QTc as a clinical endpoint. EXPERIMENTAL APPROACH: Full heart computational models reproducing human cardiac populations were created to predict the concentration-response relationship of changes in the QT interval as recommended for clinical trials. The concentration-response relationship of the QT-interval prolongation obtained from the computational cardiac population was compared against the relationship from clinical trial data for a set of well-characterized compounds: moxifloxacin, dofetilide, verapamil, and ondansetron. KEY RESULTS: Computationally derived concentration-response relationships of QT interval changes for three of the four drugs had slopes within the confidence interval of clinical trials (dofetilide, moxifloxacin and verapamil) when compared to placebo-corrected concentration-ΔQT and concentration-ΔQT regressions. Moxifloxacin showed a higher intercept, outside the confidence interval of the clinical data, demonstrating that in this example, the standard linear regression does not appropriately capture the concentration-response results at very low concentrations. The concentrations corresponding to a mean QTc prolongation of 10 ms were consistently lower in the computational model than in clinical data. The critical concentration varied within an approximate ratio of 0.5 (moxifloxacin and ondansetron) and 1 times (dofetilide, verapamil) the critical concentration observed in human clinical trials. Notably, no other in silico methodology can approximate the human critical concentration values for a QT interval prolongation of 10 ms. CONCLUSION AND IMPLICATIONS: Computational concentration-response modelling of a virtual population of high-resolution, 3-dimensional cardiac models can provide comparable information to clinical data and could be used to complement pre-clinical and clinical safety packages. It provides access to an unlimited exposure range to support trial design and can improve the understanding of pre-clinical-clinical translation.


Fluoroquinolones , Long QT Syndrome , Phenethylamines , Sulfonamides , Humans , Dose-Response Relationship, Drug , Electrocardiography , Fluoroquinolones/adverse effects , Heart Rate , Long QT Syndrome/chemically induced , Long QT Syndrome/drug therapy , Moxifloxacin/therapeutic use , Ondansetron/therapeutic use , Verapamil
10.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Article En | MEDLINE | ID: mdl-38555048

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Calcium , Myocytes, Cardiac , Pyruvaldehyde , Rats, Wistar , Animals , Pyruvaldehyde/toxicity , Rats , Calcium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Guanidines/pharmacology , Calcium Channels, L-Type/metabolism , Heart/drug effects , Myocardium/metabolism , Verapamil/pharmacology , Myocardial Contraction/drug effects
11.
Photobiomodul Photomed Laser Surg ; 42(4): 314-320, 2024 Apr.
Article En | MEDLINE | ID: mdl-38536111

Background: Acinetobacter baumannii, a nosocomial pathogen, poses a major public health problem due to generating resistance to several antimicrobial agents. Antimicrobial photodynamic inactivation (APDI) employs a nontoxic dye as a photosensitizer (PS) and light to produce reactive oxygen species that destroy bacterial cells. The intracellular concentration of PS could be affected by factors such as the function of efflux pumps to emit PS from the cytosol. Objective: To evaluate the augmentation effect of an efflux pump inhibitor, verapamil, three multidrug-resistant A. baumannii were subjected to APDI by erythrosine B (EB). Methods and results: The combination of EB and verapamil along with irradiation at 530 nm induced a lethal effect and more than 3 log colony-forming unit reduction to all A. baumannii strains in planktonic state. In contrast, EB and irradiation alone could produce only a sublethal effect on two of the strains. Conclusions: These data suggest that verapamil increases the intracellular concentration of EB, which potentiates the lethal efficacy of APDI. Verapamil could be applied with EB and green light to improve their antimicrobial efficacy against A. baumannii-localized infections.


Acinetobacter baumannii , Drug Resistance, Multiple, Bacterial , Photochemotherapy , Photosensitizing Agents , Verapamil , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/radiation effects , Verapamil/pharmacology , Photosensitizing Agents/pharmacology , Photochemotherapy/methods , Erythrosine/pharmacology , Humans
12.
J Pharm Sci ; 113(6): 1674-1681, 2024 Jun.
Article En | MEDLINE | ID: mdl-38432625

Lung cancer metastasis often leads to a poor prognosis for patients. Mesenchymal-epithelial transition (MET) is one key process associated with metastasis. MET has also been linked to multidrug drug resistance (MDR). MDR arises from the overactivity of drug efflux transporters such as P-glycoprotein (P-gp) which operate at the cell plasma membrane, under the regulatory control of the scaffold proteins ezrin (Ezr), radixin (Rdx), and moesin (Msn), collectively known as ERM proteins. The current study was intended to clarify the functional changing of P-gp and the underlying mechanisms in the context of dexamethasone (DEX)-induced MET in lung cancer cells. We found that the mRNA and membrane protein expression of Ezr and P-gp was increased in response to DEX treatment. Moreover, the DEX-treated group exhibited an increase in Rho123 efflux, and it was reversed by treatment with the P-gp inhibitor verapamil or Ezr siRNA. The decrease in cell viability with paclitaxel (PTX) treatment was mitigated by pretreatment with DEX. The increased expression and activation of P-gp during the progression of lung cancer MET was regulated by Ezr. The regulatory mechanism of P-gp expression and activity may differ depending on the cell status.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Dexamethasone , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Lung Neoplasms , Paclitaxel , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Dexamethasone/pharmacology , Cell Line, Tumor , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Epithelial-Mesenchymal Transition/drug effects , Paclitaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Drug Resistance, Multiple/drug effects , Cell Survival/drug effects , Verapamil/pharmacology , Membrane Proteins/metabolism , Membrane Proteins/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , A549 Cells
13.
Parasitol Res ; 123(3): 166, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38506929

The hemoparasite Trypanosoma equiperdum belongs to the Trypanozoon subgenus and includes several species that are pathogenic to animals and humans in tropical and subtropical areas across the world. As with all eukaryotic organisms, Ca2+ is essential for these parasites to perform cellular processes thus ensuring their survival across their life cycle. Despite the established paradigm to study proteins related to Ca2+ homeostasis as potential drug targets, so far little is known about Ca2+ entry into trypanosomes. Therefore, in the present study, the presence of a plasma membrane Ca2+-channel in T. equiperdum (TeCC), activated by sphingosine and inhibited by verapamil, is described. The TeCC was cloned and analyzed using bioinformatic resources, which confirmed the presence of several domains, motifs, and a topology similar to the Ca2+ channels found in higher eukaryotes. Biochemical and confocal microscopy assays using antibodies raised against an internal region of human L-type Ca2+ channels indicate the presence of a protein with similar predicted molar mass to the sequence analyzed, located at the plasma membrane of T. equiperdum. Physiological assays based on Fura-2 signals and Mn2+ quenching performed on whole parasites showed a unidirectional Ca2+ entry, which is activated by sphingosine and blocked by verapamil, with the distinctive feature of insensitivity to nifedipine and Bay K 8644. This suggests a second Ca2+ entry for T. equiperdum, different from the store-operated Ca2+ entry (SOCE) previously described. Moreover, the evidence presented here for the TeCC indicates molecular and pharmacological differences with their mammal counterparts, which deserve further studies to evaluate the potential of this channel as a drug target.


Sphingosine , Trypanosoma , Animals , Humans , Sphingosine/pharmacology , Verapamil/pharmacology , Cell Membrane/metabolism , Calcium/metabolism , Mammals
14.
Front Biosci (Landmark Ed) ; 29(2): 47, 2024 Feb 04.
Article En | MEDLINE | ID: mdl-38420828

BACKGROUND: The leaves of Origanum majorana (O. majorana) are traditionally renowned for treating diarrhea and gut spasms. This study was therefore planned to evaluate its methanolic extract. METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to identify the phytochemicals, and Swiss albino mice were used for an in vivo antidiarrheal assay. Isolated rat ileum was used as an ex vivo assay model to study the possible antispasmodic effect and its mechanism(s). RESULTS: The GC-MS analysis of O. majorana detected the presence of 21 compounds, of which alpha-terpineol was a major constituent. In the antidiarrheal experiment, O. majorana showed a substantial inhibitory effect on diarrheal episodes in mice at an oral dosage of 200 mg/kg, resulting in 40% protection. Furthermore, an oral dosage of 400 mg/kg provided even greater protection, with 80% effectiveness. Similarly, loperamide showed 100% protection at oral doses of 10 mg/kg. O. majorana caused complete inhibition of carbachol (CCh, 1 µM) and high K+ (80 mM)-evoked spasms in isolated ileal tissues by expressing significantly higher potency (p < 0.05) against high K+ compared to CCh, similar to verapamil, a Ca++ antagonist. The verapamil-like predominant Ca++ ion inhibitory action of O. majorana was further confirmed in the ileal tissues that were made Ca++-free by incubating the tissues in a physiological salt solution having ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The preincubation of O. majorana at increasing concentrations (0.3 and 1 mg/mL) shifted towards the right of the CaCl2-mediated concentration-response curves (CRCs) with suppression of the maximum contraction. Similarly, verapamil also caused non-specific suppression of Ca++ CRCs towards the right, as expected. CONCLUSIONS: Thus, this study conducted an analysis to determine the chemical constituents of the leaf extract of O. majorana and provided a detailed mechanistic basis for the medicinal use of O. majorana in hyperactive gut motility disorders.


Antidiarrheals , Origanum , Rats , Mice , Animals , Antidiarrheals/pharmacology , Antidiarrheals/therapeutic use , Antidiarrheals/chemistry , Jejunum , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Castor Oil/pharmacology , Castor Oil/therapeutic use , Diarrhea/drug therapy , Verapamil/pharmacology , Verapamil/therapeutic use , Calcium Channels , Spasm/drug therapy
15.
J Orthop Surg Res ; 19(1): 147, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38373964

PURPOSE: Patients are typically diagnosed with both hypertension and fibrosarcoma. Medical oncologists must prescribe suitable anti-hypertensive medications while considering anti-tumor drugs. Recently, immunotherapy has become prominent in cancer treatment. Nonetheless, it is unknown what role anti-hypertensive medications will play in immunotherapy. METHODS: We examined the effects of six first-line anti-hypertensive medications on programmed cell death protein 1 antibody (PD1ab) in tumor treatment using a mouse model of subcutaneous fibrosarcoma. The drugs examined were verapamil, losartan, furosemide, spironolactone, captopril, and hydrochlorothiazide (HCTZ). The infiltration of CD8+ T cells was examined by immunohistochemistry. Additionally, several in vitro and in vivo assays were used to study the effects of HCTZ on human fibrosarcoma cancer cells to explore its mechanism. RESULTS: Verapamil suppressed tumor growth and showed an improved effect on the tumor inhibition of PD1ab. Captopril did not affect tumor growth but brought an unexpected benefit to PD1ab treatment. In contrast, spironolactone and furosemide showed no effect on tumor growth but had an offset effect on the PD1ab therapy. Consequently, the survival time of mice was also significantly reduced. Notably, losartan and HCTZ, especially HCTZ, promoted tumor growth and weakened the effect of PD1ab treatment. Consistent results were observed in vivo and in vitro using the human fibrosarcoma cell line HT1080. We determined that the Solute Carrier Family 12 Member 3 (SLC12A3), a known target of HCTZ, may be the principal factor underlying its effect-enhancing properties through mechanism studies employing The Cancer Genome Atlas (TCGA) data and in vivo and in vitro assays. CONCLUSION: Verapamil and captopril potentiated the anti-tumor effect of PD1ab, whereas spironolactone and furosemide weakened the effect of PD1ab on tumor inhibition. Alarmingly, losartan and HCTZ promoted tumor growth and impaired the effect of PD1ab. Furthermore, we preliminarily found that HCTZ may promote tumor progression through SLC12A3. Based on this study, futher mechanism researches and clinical trials should be conducted in the future.


Fibrosarcoma , Hypertension , Humans , Antihypertensive Agents/therapeutic use , Losartan/pharmacology , Losartan/therapeutic use , Captopril/pharmacology , Captopril/therapeutic use , Spironolactone/therapeutic use , Furosemide/therapeutic use , CD8-Positive T-Lymphocytes , Hypertension/drug therapy , Hydrochlorothiazide/therapeutic use , Drug Therapy, Combination , Verapamil/pharmacology , Verapamil/therapeutic use , Fibrosarcoma/drug therapy , Solute Carrier Family 12, Member 3
16.
BMC Musculoskelet Disord ; 25(1): 123, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38336651

BACKGROUND: The purpose of this study was to investigate the effects of four different doses of verapamil on the mechanical behaviors of solid and the characteristics of fluid flow in cancellous bone of distal femur of type 2 diabetes rats under dynamic external load. METHODS: Based on the micro-CT images, the finite element models of cancellous bones and fluids at distal femurs of rats in control group, diabetes group, treatment groups VER 4, VER 12, VER 24, and VER 48 (verapamil doses of 4, 12, 24, and 48 mg/kg/day, respectively) were constructed. A sinusoidal time-varying displacement load with an amplitude of 0.8 µm and a period of 1s was applied to the upper surface of the solid region. Then, fluid-solid coupling numerical simulation method was used to analyze the magnitudes and distributions of von Mises stress, flow velocity, and fluid shear stress of cancellous bone models in each group. RESULTS: The results for mean values of von Mises stress, flow velocity and FSS (t = 0.25s) were as follows: their values in control group were lower than those in diabetes group; the three parameters varied with the dose of verapamil; in the four treatment groups, the values of VER 48 group were the lowest, they were the closest to control group, and they were smaller than diabetes group. Among the four treatment groups, VER 48 group had the highest proportion of the nodes with FSS = 1-3 Pa on the surface of cancellous bone, and more areas in VER 48 group were subjected to fluid shear stress of 1-3 Pa for more than half of the time. CONCLUSION: It could be seen that among the four treatment groups, osteoblasts on the cancellous bone surface in the highest dose group (VER 48 group) were more easily activated by mechanical loading, and the treatment effect was the best. This study might help in understanding the mechanism of verapamil's effect on the bone of type 2 diabetes mellitus, and provide theoretical guidance for the selection of verapamil dose in the clinical treatment of type 2 diabetes mellitus.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats , Animals , Cancellous Bone/diagnostic imaging , Diabetes Mellitus, Type 2/drug therapy , Verapamil/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Computer Simulation , Stress, Mechanical , Finite Element Analysis
17.
Biopharm Drug Dispos ; 45(2): 71-82, 2024 Apr.
Article En | MEDLINE | ID: mdl-38400763

This research aims to identify regional differences in vildagliptin absorption across the intestinal membrane. Furthermore, it was to investigate the effect of verapamil or metformin on vildagliptin absorptive clearance. The study utilized an in situ rabbit intestinal perfusion technique to determine vildagliptin oral absorption from duodenum, jejunum, ileum, and ascending colon. This was conducted both with and without perfusion of metformin or verapamil. The findings revealed that the vildagliptin absorptive clearance per unit length varied by site and was in the order as follows: ileum < jejunum < duodenum < ascending colon, implying that P-gp is significant in the reduction of vildagliptin absorption. Also, the arrangement cannot reverse intestinal P-gp, but the observations suggest that P-gp is significant in reducing vildagliptin absorption. Verapamil co-perfusion significantly increased the vildagliptin absorptive clearance by 2.4 and 3.2 fold through the jejunum and ileum, respectively. Metformin co-administration showed a non-significant decrease in vildagliptin absorptive clearance through all tested segments. Vildagliptin absorption was site-dependent and may be related to the intestinal P-glycoprotein content. This may aid in understanding the important elements that influence vildagliptin absorption, besides drug-drug interactions that can occur in type 2 diabetic patients taking vildagliptin in conjunction with other drugs that can modify the P-glycoprotein level.


Metformin , Animals , Humans , Rabbits , Vildagliptin/pharmacology , Metformin/pharmacology , Verapamil/pharmacology , Intestinal Absorption , Intestines , ATP Binding Cassette Transporter, Subfamily B
18.
J Clin Invest ; 134(1)2024 Jan 02.
Article En | MEDLINE | ID: mdl-38165038

Myotonic dystrophy type 1 (DM1) involves misregulated alternative splicing for specific genes. We used exon or nucleotide deletion to mimic altered splicing of genes central to muscle excitation-contraction coupling in mice. Mice with forced skipping of exon 29 in the CaV1.1 calcium channel combined with loss of ClC-1 chloride channel function displayed markedly reduced lifespan, whereas other combinations of splicing mimics did not affect survival. The Ca2+/Cl- bi-channelopathy mice exhibited myotonia, weakness, and impairment of mobility and respiration. Chronic administration of the calcium channel blocker verapamil rescued survival and improved force generation, myotonia, and respiratory function. These results suggest that Ca2+/Cl- bi-channelopathy contributes to muscle impairment in DM1 and is potentially mitigated by common clinically available calcium channel blockers.


Channelopathies , Myotonia , Myotonic Dystrophy , Mice , Animals , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Calcium/metabolism , Chlorides/metabolism , Myotonia/metabolism , Verapamil/pharmacology , Verapamil/metabolism , Channelopathies/genetics , Channelopathies/metabolism , Alternative Splicing , Chloride Channels/genetics , Chloride Channels/metabolism , Muscle, Skeletal/metabolism
19.
Ann Plast Surg ; 92(1S Suppl 1): S52-S59, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38285997

BACKGROUND: Keloids are common benign skin lesions originating from a disorganized fibroproliferative collagen response; these lesions often lead to both physical and psychological problems. The optimal treatment for keloids is yet to be standardized. Intralesional injection, which is simple and nontraumatic, is one of the most commonly used treatment modalities for these lesions. In this study, we compared 5 different drugs (intralesional injections) for the treatment of keloids in terms of efficacy. METHODS: We systemically searched relevant studies on PubMed, EMBASE, and Cochrane Library. Randomized clinical trials on the safety and efficacy of triamcinolone acetonide (TAC), 5-fluorouracil (5-FU), botulinum toxin A (BTA), verapamil, and bleomycin were included in this study. RESULTS: This network meta-analysis included a total of 1114 patients from 20 randomized controlled trials. Botulinum toxin A alone and TAC plus 5-FU exhibited significantly better efficacy than did 5-FU, TAC, and verapamil. No significant difference in efficacy between BTA alone and TAC combined with 5-FU was observed. No significant differences were noted in the adverse event rate between BTA, TAC plus 5-FU, 5-FU, and TAC. Furthermore, we performed surface under the cumulative ranking curve analyses to predict the rank of each intervention (by efficacy and adverse event rate). The predicted ranking by efficacy was as follows: TAC plus 5-FU, BTA, bleomycin, TAC, 5-FU, and verapamil; the predicted ranking by adverse events was as follows: TAC, 5-FU, TAC plus 5-FU, and BTA. Funnel plot analysis revealed no publication bias. CONCLUSIONS: Botulinum toxin A and TAC plus 5-FU appear to have outstanding therapeutic efficacy for keloids. The rate of adverse events was similar among BTA, TAC, 5-FU, and TAC plus 5-FU. Nonetheless, additional reviews of rigorous, large-scale randomized controlled trials are warranted for further validation of our findings.


Botulinum Toxins, Type A , Keloid , Humans , Keloid/drug therapy , Keloid/pathology , Botulinum Toxins, Type A/therapeutic use , Network Meta-Analysis , Drug Therapy, Combination , Treatment Outcome , Fluorouracil/therapeutic use , Injections, Intralesional , Bleomycin/therapeutic use , Verapamil/therapeutic use , Randomized Controlled Trials as Topic
...