Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.234
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673805

Amphetamines (Amph) are psychostimulants broadly used as physical and cognitive enhancers. However, the long-term effects of prenatal exposure to Amph have been poorly investigated. Here, we show that continuous exposure to Amph during early development induces long-lasting changes in histone methylation at the C. elegans tyrosine hydroxylase (TH) homolog cat-2 and the vesicular monoamine transporter (VMAT) homologue cat-1 genes. These Amph-induced histone modifications are correlated with enhanced expression and function of CAT-2/TH and higher levels of dopamine, but decreased expression of CAT-1/VMAT in adult animals. Moreover, while adult animals pre-exposed to Amph do not show obvious behavioral defects, when challenged with Amph they exhibit Amph hypersensitivity, which is associated with a rapid increase in cat-2/TH mRNA. Because C. elegans has helped reveal neuronal and epigenetic mechanisms that are shared among animals as diverse as roundworms and humans, and because of the evolutionary conservation of the dopaminergic response to psychostimulants, data collected in this study could help us to identify the mechanisms through which Amph induces long-lasting physiological and behavioral changes in mammals.


Amphetamine , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Embryonic Development , Tyrosine 3-Monooxygenase , Vesicular Monoamine Transport Proteins , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/genetics , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Amphetamine/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Embryonic Development/drug effects , Embryonic Development/genetics , Gene Expression Regulation, Developmental/drug effects , Dopamine/metabolism , Epigenesis, Genetic/drug effects
2.
Mov Disord ; 39(5): 847-854, 2024 May.
Article En | MEDLINE | ID: mdl-38477228

BACKGROUND: As a biomarker targeting vesicular monoamine transporter 2 (VMAT2), 18F-9-fluoropropyldihydrotetrabenazine (18F-FP-DTBZ) positron emission tomography (PET) is highly accurate in diagnosing Parkinson's disease (PD) and assessing its severity. However, evidence is insufficient in patients with progressive supranuclear palsy (PSP). OBJECTIVE: We evaluated the striatal and extrastriatal monoaminergic disruption of PSP and differences in patterns between patients with PSP, PD, and healthy controls (HCs) using 18F-FP-DTBZ PET, as well as its correlations with the clinical characteristics of PSP. METHODS: We recruited 58 patients with PSP, 23 age- and duration-matched patients with PD, as well as 17 HCs. Patients were scanned using 18F-FP-DTBZ PET/computed tomography, and images were spatially normalized and analyzed based on the volume of interest. RESULTS: VMAT2 binding differed significantly in the striatum and substantia nigra among the groups (P < 0.001). A more severe disruption in the caudate was noted in the PSP group (P < 0.001) than in the PD group. However, no differences were found in the nucleus accumbens, hippocampus, amygdala, or raphe between the PD and PSP groups. Within the PSP group, striatal VMAT2 binding was significantly associated with the fall/postural stability subscore of the PSP Rating Scale, especially in the putamen. Furthermore, VMAT2 binding was correlated with Mini-Mental State Examination or Montreal Cognitive Assessment in the hippocampus. CONCLUSIONS: Caudate disruptions showed prominent differences among the groups. VAMT2 binding in the striatum and hippocampus reflects the severity of fall/postural stability and cognition, respectively. © 2024 International Parkinson and Movement Disorder Society.


Corpus Striatum , Parkinson Disease , Supranuclear Palsy, Progressive , Vesicular Monoamine Transport Proteins , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/metabolism , Male , Female , Aged , Middle Aged , Vesicular Monoamine Transport Proteins/metabolism , Corpus Striatum/metabolism , Corpus Striatum/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography/methods , Tetrabenazine/analogs & derivatives , Substantia Nigra/diagnostic imaging , Substantia Nigra/metabolism , Substantia Nigra/pathology , Positron Emission Tomography Computed Tomography/methods
3.
Eur J Neurosci ; 59(10): 2465-2482, 2024 May.
Article En | MEDLINE | ID: mdl-38487941

The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.


Dopamine Plasma Membrane Transport Proteins , Dopaminergic Neurons , Enteric Nervous System , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopaminergic Neurons/metabolism , Mice , Enteric Nervous System/metabolism , Enteric Nervous System/cytology , Mice, Transgenic , Tyrosine 3-Monooxygenase/metabolism , Dopamine/metabolism , Male , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/genetics
4.
Trends Pharmacol Sci ; 45(5): 385-387, 2024 May.
Article En | MEDLINE | ID: mdl-38429134

Vesicular monoamine transporter (VMAT)-2 has a crucial role in the neurotransmission of biogenic amines. Recently, Dalton et al., Pidathala et al., Wu et al., and Wang et al. individually reported cryo-electron microscopy (EM) structures of human VMAT2, offering opportunities for developing improved therapeutics and deep insights into the functioning of this protein.


Cryoelectron Microscopy , Drug Development , Vesicular Monoamine Transport Proteins , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/metabolism , Humans , Animals
5.
Elife ; 122024 Mar 22.
Article En | MEDLINE | ID: mdl-38517752

The vesicular monoamine transporter 2 (VMAT2) is a proton-dependent antiporter responsible for loading monoamine neurotransmitters into synaptic vesicles. Dysregulation of VMAT2 can lead to several neuropsychiatric disorders including Parkinson's disease and schizophrenia. Furthermore, drugs such as amphetamine and MDMA are known to act on VMAT2, exemplifying its role in the mechanisms of actions for drugs of abuse. Despite VMAT2's importance, there remains a critical lack of mechanistic understanding, largely driven by a lack of structural information. Here, we report a 3.1 Å resolution cryo-electron microscopy (cryo-EM) structure of VMAT2 complexed with tetrabenazine (TBZ), a non-competitive inhibitor used in the treatment of Huntington's chorea. We find TBZ interacts with residues in a central binding site, locking VMAT2 in an occluded conformation and providing a mechanistic basis for non-competitive inhibition. We further identify residues critical for cytosolic and lumenal gating, including a cluster of hydrophobic residues which are involved in a lumenal gating strategy. Our structure also highlights three distinct polar networks that may determine VMAT2 conformational dynamics and play a role in proton transduction. The structure elucidates mechanisms of VMAT2 inhibition and transport, providing insights into VMAT2 architecture, function, and the design of small-molecule therapeutics.


Huntington Disease , Tetrabenazine , Humans , Tetrabenazine/metabolism , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Protons , Cryoelectron Microscopy
6.
Article En | MEDLINE | ID: mdl-38497033

Background: Tardive Dyskinesia (TD) is a neurological disorder characterized by involuntary movements, often caused by dopamine receptor antagonists. Vesicular Monoamine Transporter 2 (VMAT2) inhibitors, such as valbenazine and deutetrabenazine, have emerged as promising therapies for TD and several clinical trials have shown their efficacy. This study aims to compare the efficacy and safety profile of VMAT2 inhibitors, focusing on a recent trial conducted in the Asian population. Methods: We reviewed the PubMed, Cochrane Library, Embase database, and clinicaltrials.gov between January 2017 and October 2023, using the keywords "tardive dyskinesia" AND ("valbenazine" [all fields] OR " deutetrabenazine " [all fields]) AND "clinical trial". The reviewed articles were studied for efficacy and side effects. Results: An initial search yielded 230 articles, of which 104 were duplicates. Following the title and abstract screening, 25 additional articles were excluded. A full-text review resulted in the exclusion of 96 more articles. Ultimately, four double-blind clinical trials met the inclusion criteria. The deutetrabenazine studies demonstrated significant improvements in Abnormal Involuntary Movement Scale (AIMS) scores compared to placebo, with no difference in adverse events. The valbenazine studies showed favorable results in reducing TD symptoms and were well-tolerated. Discussion: The studies reviewed in this analysis underscore the potential of deutetrabenazine and valbenazine as valuable treatment options for TD in diverse populations. Both medications demonstrated significant improvements in AIMS scores, suggesting their effectiveness in managing TD symptoms. Additionally, they exhibited favorable safety profiles, with low rates of serious adverse events and no significant increase in QT prolongation, parkinsonism, suicidal ideation, or mortality. Conclusion: The studies reviewed highlight the promising efficacy and tolerability of deutetrabenazine and valbenazine as treatments for Tardive Dyskinesia, providing new hope for individuals affected by this challenging condition.


Tardive Dyskinesia , Tetrabenazine , Valine , Humans , Randomized Controlled Trials as Topic , Tardive Dyskinesia/drug therapy , Tardive Dyskinesia/chemically induced , Tetrabenazine/adverse effects , Tetrabenazine/analogs & derivatives , Tetrabenazine/therapeutic use , Valine/analogs & derivatives , Vesicular Monoamine Transport Proteins
7.
Nature ; 629(8010): 235-243, 2024 May.
Article En | MEDLINE | ID: mdl-38499039

Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.


Biogenic Monoamines , Drug Interactions , Vesicular Monoamine Transport Proteins , Humans , 1-Methyl-4-phenylpyridinium/chemistry , 1-Methyl-4-phenylpyridinium/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Amphetamine/chemistry , Amphetamine/pharmacology , Amphetamine/metabolism , Binding Sites , Biogenic Monoamines/chemistry , Biogenic Monoamines/metabolism , Cryoelectron Microscopy , Dopamine/chemistry , Dopamine/metabolism , Models, Molecular , Norepinephrine/chemistry , Norepinephrine/metabolism , Protein Binding , Protons , Reserpine/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
8.
Neurol Res ; 46(5): 406-415, 2024 May.
Article En | MEDLINE | ID: mdl-38498979

OBJECTIVES: Current treatments for Parkinson's disease using pharmacological approaches alleviate motor symptoms but do not prevent neuronal loss or dysregulation of dopamine neurotransmission. In this article, we have explored the molecular mechanisms underlying the neuroprotective effect of the antioxidant N-acetylcysteine (NAC) on the damaged dopamine system. METHODS: SH-SY5Y cells were differentiated towards a dopaminergic phenotype and exposed to 6-hydroxydopamine (6-OHDA) to establish an in vitro model of Parkinson's disease. We examined the potential of NAC to restore the pathological effects of 6-OHDA on cell survival, dopamine synthesis as well as on key proteins regulating dopamine metabolism. Specifically, we evaluated gene- and protein expression of tyrosine hydroxylase (TH), vesicle monoamine transporter 2 (VMAT2), and α-synuclein, by using qPCR and Western blot techniques. Moreover, we quantified the effect of NAC on total dopamine levels using a dopamine ELISA assay. RESULTS: Our results indicate that NAC has a neuroprotective role in SH-SY5Y cells exposed to 6-OHDA by maintaining cell proliferation and decreasing apoptosis. Additionally, we demonstrated that NAC treatment increases dopamine release and protects SH-SY5Y cells against 6-OHDA dysregulations on the proteins TH, VMAT2, and α-synuclein. CONCLUSIONS: Our findings contribute to the validation of compounds capable to restore dopamine homeostasis and shed light on the metabolic pathways that could be targeted to normalize dopamine turnover. Furthermore, our results highlight the effectiveness of the antioxidant NAC in the prevention of dopaminergic neurodegeneration in the present model. ABBREVIATIONS: DAT, dopamine transporter; 6-OHDA, 6-hydroxydopamine; NAC, N-acetylcysteine; PARP, poly (ADP-ribose) polymerase; RA; retinoic acid; ROS, reactive oxygen species; TH, tyrosine hydroxylase; TPA, 12-O-tetradecanoyl-phorbol-13-acetate; VMAT2, vesicle monoamine transporter 2.


Acetylcysteine , Dopamine , Oxidopamine , Tyrosine 3-Monooxygenase , Vesicular Monoamine Transport Proteins , alpha-Synuclein , Vesicular Monoamine Transport Proteins/metabolism , Humans , Oxidopamine/toxicity , alpha-Synuclein/metabolism , Dopamine/metabolism , Acetylcysteine/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Cell Survival/drug effects
9.
Environ Toxicol Pharmacol ; 107: 104399, 2024 Apr.
Article En | MEDLINE | ID: mdl-38403141

ß-N-methylamino-l-alanine (BMAA) has been shown to inhibit vesicular monoamine transporter 2 (VMAT2), thereby preventing the uptake of monoaminergic neurotransmitters into platelet dense granules and synaptic vesicles. The inhibition is hypothesized to be through direct association of BMAA with hydroxyl groupꟷcontaining amino acid residues in VMAT2. This study evaluated whether BMAA-induced inhibition of VMAT2 could be prevented directly by co-incubation of BMAA with amino acids, and if this protection was specific for BMAA inhibition of VMAT2. l-tyrosine, and to a lesser extent l-serine, was able to prevent BMAA-induced VMAT2 inhibition in a concentration-dependent manner, whereas neither l-threonine nor amino acids without side chain hydroxyl groups could reduce this inhibition. Reserpine-induced VMAT2 inhibition was unaffected by any of the amino acids. These data support the hypothesized interaction between BMAA and hydroxyl groupꟷcontaining amino acids and suggests that this interaction might be leveraged to protect against the toxicity of BMAA.


Amino Acids, Diamino , Amino Acids , Amino Acids/pharmacology , Vesicular Monoamine Transport Proteins , Amino Acids, Diamino/toxicity , Tyrosine , Neurotoxins/metabolism
10.
Cell Res ; 34(1): 47-57, 2024 01.
Article En | MEDLINE | ID: mdl-38163846

Monoamine neurotransmitters such as serotonin and dopamine are loaded by vesicular monoamine transporter 2 (VMAT2) into synaptic vesicles for storage and subsequent release in neurons. Impaired VMAT2 function underlies various neuropsychiatric diseases. VMAT2 inhibitors reserpine and tetrabenazine are used to treat hypertension, movement disorders associated with Huntington's Disease and Tardive Dyskinesia. Despite its physiological and pharmacological significance, the structural basis underlying VMAT2 substrate recognition and its inhibition by various inhibitors remains unknown. Here we present cryo-EM structures of human apo VMAT2 in addition to states bound to serotonin, tetrabenazine, and reserpine. These structures collectively capture three states, namely the lumen-facing, occluded, and cytosol-facing conformations. Notably, tetrabenazine induces a substantial rearrangement of TM2 and TM7, extending beyond the typical rocker-switch movement. These functionally dynamic snapshots, complemented by biochemical analysis, unveil the essential components responsible for ligand recognition, elucidate the proton-driven exchange cycle, and provide a framework to design improved pharmaceutics targeting VMAT2.


Tetrabenazine , Vesicular Monoamine Transport Proteins , Humans , Reserpine , Serotonin/metabolism , Synaptic Vesicles/metabolism , Tetrabenazine/pharmacology , Tetrabenazine/metabolism , Vesicular Monoamine Transport Proteins/metabolism
11.
Psychopharmacology (Berl) ; 241(2): 225-241, 2024 Feb.
Article En | MEDLINE | ID: mdl-38238580

RATIONALE: Dopamine antagonists induce dopamine receptor supersensitivity. This may manifest in late-appearing movement disorders (tardive dyskinesia (TD). VMAT-2 inhibitors reduce dopaminergic transmission but have limited activity at postsynaptic receptors and so may have antipsychotic activity with lower risk of tardive dyskinesia. METHODS: We conducted a systematic database search from inception to September 2022 for articles describing the use of VMAT-2 inhibitors in psychosis. Inclusion criteria were as follows: Population: adults diagnosed with psychosis or schizophrenia; Intervention: treatment with tetrabenazine, deutetrabenazine or valbenazine; Comparison: comparison with placebo or/and antipsychotic drug; Outcomes: with efficacy outcomes (e.g. Brief Psychiatric Rating Scale (BPRS) change or clinician assessment) and adverse effects ratings (e.g. rating scale or clinician assessment or dropouts); and Studies: in randomised controlled trials and non-randomised studies. RESULTS: We identified 4892 records relating to VMAT-2 inhibitor use of which 5 (173 participants) met our a priori meta-analysis inclusion criteria. VMAT-2 inhibitors were more effective than placebo for the outcome 'slight improvement' (risk ratio (RR) = 1.77 (95% CI 1.03, 3.04)) but not for 'moderate improvement' (RR 2.81 (95% CI 0.27, 29.17). VMAT-2 inhibitors were as effective as active comparators on both measures for-'slight improvement' (RR 1.05 (95% CI 0.6, 1.81)) and 'moderate improvement' (RR 1.11 (95% CI 0.51, 2.42). Antipsychotic efficacy was also suggested by a narrative review of 37 studies excluded from the meta-analysis. CONCLUSIONS: VMAT-2 inhibitors may have antipsychotic activity and may offer promise for treatment of psychosis with the potential for a reduced risk of TD.


Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Vesicular Monoamine Transport Proteins , Adult , Humans , Antipsychotic Agents/adverse effects , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Tardive Dyskinesia/drug therapy , Tetrabenazine/therapeutic use , Vesicular Monoamine Transport Proteins/antagonists & inhibitors
12.
Nature ; 626(7998): 427-434, 2024 Feb.
Article En | MEDLINE | ID: mdl-38081299

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Cryoelectron Microscopy , Vesicular Monoamine Transport Proteins , Humans , Binding Sites , Cytoplasm/drug effects , Cytoplasm/metabolism , Ketanserin/chemistry , Ketanserin/metabolism , Ketanserin/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Reserpine/pharmacology , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Tetrabenazine/chemistry , Tetrabenazine/metabolism , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
13.
Pediatr Blood Cancer ; 71(1): e30743, 2024 Jan.
Article En | MEDLINE | ID: mdl-37885116

BACKGROUND: Prior studies suggest that norepinephrine transporter (NET) and vesicular monoamine transporter 2 (VMAT2) mediate meta-iodobenzylguanidine (MIBG) uptake and retention in neuroblastoma tumors. We evaluated the relationship between NET and VMAT2 tumor expression and clinical response to 131 I-MIBG therapy in patients with neuroblastoma. METHODS: Immunohistochemistry (IHC) was used to evaluate NET and VMAT2 protein expression levels on archival tumor samples (obtained at diagnosis or relapse) from patients with relapsed or refractory neuroblastoma treated with 131 I-MIBG. A composite protein expression H-score was determined by multiplying a semi-quantitative intensity value (0-3+) by the percentage of tumor cells expressing the protein. RESULTS: Tumor samples and clinical data were available for 106 patients, of whom 28.3% had partial response (PR) or higher. NET H-score was not significantly associated with response (≥PR), though the percentage of tumor cells expressing NET was lower among responders (median 80% for ≥PR vs. 90% for

3-Iodobenzylguanidine , Neuroblastoma , Humans , 3-Iodobenzylguanidine/therapeutic use , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Radiopharmaceuticals , N-Myc Proto-Oncogene Protein , Neoplasm Recurrence, Local/drug therapy , Neuroblastoma/drug therapy , Chronic Disease
14.
Exp Mol Med ; 55(11): 2357-2375, 2023 11.
Article En | MEDLINE | ID: mdl-37907739

Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.


Dopamine , Vesicular Monoamine Transport Proteins , Animals , Mice , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Presynaptic Terminals/metabolism , Synapsins/genetics , Synapsins/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism
15.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Article En | MEDLINE | ID: mdl-37914936

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Neurotransmitter Agents , Reserpine , Serotonin , Tetrabenazine , Vesicular Monoamine Transport Proteins , Humans , Adrenergic Uptake Inhibitors/chemistry , Adrenergic Uptake Inhibitors/pharmacology , Biological Transport/drug effects , Cryoelectron Microscopy , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacology , Reserpine/chemistry , Reserpine/pharmacology , Serotonin/metabolism , Synaptic Transmission , Tetrabenazine/chemistry , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure , Substrate Specificity/drug effects
16.
Neurology ; 101(22): e2314-e2324, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-37816639

BACKGROUND AND OBJECTIVES: There are limited validated biomarkers in Parkinson disease (PD) which substantially hinders the ability to monitor disease progression and consequently measure the efficacy of disease-modifying treatments. Imaging biomarkers, such as vesicular monoamine transporter type 2 (VMAT2) PET, enable enhanced diagnostic accuracy and detect early neurodegenerative changes associated with prodromal PD. This study sought to assess whether 18F-AV-133 VMAT2 PET is sensitive enough to monitor and quantify disease progression over a 2-year window. METHODS: 18F-AV-133 PET scans were performed on participants with PD and REM sleep behavior disorder (RBD) and neurologic controls (NC). All participants were scanned twice ∼26 months apart. Regional tracer retention was calculated with a primary visual cortex reference region and expressed as the standard uptake volume ratio. Regions of interest included caudate, anterior, and posterior putamen. At the time of scanning, participants underwent clinical evaluation including UPDRSMOTOR test, Sniffin' Sticks, and Hospital Anxiety and Depression Score. RESULTS: Over the 26-month interval, a significant decline in PET signal was observed in all 3 regions in participants with PD (N = 26) compared with NC (N = 12), consistent with a decrease in VMAT2 level and ongoing neurodegeneration. Imaging trajectory calculations suggest that the neurodegeneration in PD occurs over ∼33 years [CI: 27.2-39.5], with ∼10.5 years [CI: 9.1-11.3] of degeneration in the posterior putamen before it becomes detectable on a VMAT2 PET scan, a further ∼6.5 years [CI: 1.6-12.7] until symptom onset, and a further ∼3 years [CI: 0.3-8.7] until clinical diagnosis. DISCUSSION: Over a 2-year period, 18F-AV-133 VMAT2 PET was able to detect progression of nigrostriatal degeneration in participants with PD, and it represents a sensitive tool to identify individuals at risk of progression to PD, which are currently lacking using clinical readouts. Trajectory models propose that there is nigrostriatal degeneration occurring for 20 years before clinical diagnosis. These data demonstrate that VMAT2 PET provides a sensitive measure to monitor neurodegenerative progression of PD which has implications for PD diagnostics and subsequently clinical trial patient stratification and monitoring. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that VMAT2 PET can detect patients with Parkinson disease and quantify progression over a 2-year window.


Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography/methods , Vesicular Monoamine Transport Proteins , Biomarkers , Disease Progression
17.
Proc Natl Acad Sci U S A ; 120(42): e2309843120, 2023 10 17.
Article En | MEDLINE | ID: mdl-37812725

The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high-frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a distinct population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.


Dopamine , Synaptic Vesicles , Dopamine/metabolism , Synaptic Vesicles/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism , Axons/metabolism , Mesencephalon/metabolism
18.
Pharmacol Res Perspect ; 11(5): e01135, 2023 10.
Article En | MEDLINE | ID: mdl-37740715

The importance of vesicular monoamine transporter 2 (VMAT2) in dopamine regulation, which is considered crucial for neuropsychiatric disorders, is currently being studied. Moreover, the development of disease treatments using histone deacetylase (HDAC) inhibitors (HDACi) is actively progressing in various fields. Recently, research on the possibility of regulating neuropsychiatric disorders has been conducted. In this study, we evaluated whether VMAT2 expression increased by an HDACi can fine-tune neuropsychotic behavior, such as attention deficit hyperactivity disorder (ADHD) and protect against the cell toxicity through oxidized dopamine. First, approximately 300 candidate HDACi compounds were added to the SH-SY5Y dopaminergic cell line to identify the possible changes in the VMAT2 expression levels, which were measured using quantitative polymerase chain reaction. The results demonstrated, that treatment with pimelic diphenylamide 106 (TC-H 106), a class I HDACi, increased VMAT2 expression in both the SH-SY5Y cells and mouse brain. The increased VMAT2 expression induced by TC-H 106 alleviated the cytotoxicity attributed to 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium (MPP+ ) and free dopamine treatment. Moreover, dopamine concentrations, both intracellularly and in the synaptosomes, were significantly elevated by increased VMAT2 expression. These results suggest that dopamine concentration regulation by VMAT2 expression induced by TC-H 106 could alter several related behavioral aspects that was confirmed by attenuation of hyperactivity and impulsivity, which were major characteristics of animal model showing ADHD-like behaviors. These results indicate that HDACi-increased VMAT2 expression offers sufficient protections against dopaminergic cell death induced by oxidative stress. Thus, the epigenetic approach could be considered as therapeutic candidate for neuropsychiatric disease regulation.


Histone Deacetylase Inhibitors , Neuroblastoma , Humans , Animals , Mice , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Vesicular Monoamine Transport Proteins/genetics , Cytoprotection , Dopamine , Oxidopamine
19.
Toxicol Sci ; 196(1): 99-111, 2023 10 30.
Article En | MEDLINE | ID: mdl-37607008

Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.


Parkinson Disease , Pesticides , Synucleinopathies , Mice , Animals , Male , Female , alpha-Synuclein/metabolism , Dopamine , Dieldrin/toxicity , Mice, Inbred C57BL , Pesticides/toxicity , Vesicular Monoamine Transport Proteins , Synaptic Transmission , Substantia Nigra/metabolism
20.
J Biol Chem ; 299(8): 105063, 2023 08.
Article En | MEDLINE | ID: mdl-37468107

Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca2+-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca2+ levels, we employ the fluorescent Ca2+ sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRABDA1H expressed in cocultured "sniffer" cells. In the presence of the Na+-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca2+ and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca2+. The independence of cytosolic Ca2+ was further supported by activation of N-methyl-D-aspartate-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca2+ without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca2+ spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca2+ in an autoreceptor-dependent manner regardless of the apparent independence of Ca2+ for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca2+ but is strictly dependent on the concerted action of AMPH on both vesicular monoamine transporter-2 and DAT.


Amphetamine , Dopamine Plasma Membrane Transport Proteins , Dopamine , Amphetamine/metabolism , Amphetamine/pharmacology , Cocaine/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Vesicular Monoamine Transport Proteins , Humans , Cell Line, Tumor
...