Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
J Virol ; 98(7): e0020224, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38842318

RESUMEN

Nucleoprotein (N) is well known for its function in the encapsidation of the genomic RNAs of negative-strand RNA viruses, which leads to the formation of ribonucleoproteins that serve as templates for viral transcription and replication. However, the function of the N protein in other aspects during viral infection is far from clear. In this study, the N protein of snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was proved to be ubiquitinated mainly via K63-linked ubiquitination. We identified nine host E3 ubiquitin ligases that interacted with SHVV N, among which seven E3 ubiquitin ligases facilitated ubiquitination of the N protein. Further investigation revealed that only two E3 ubiquitin ligases, Siah E3 ubiquitin protein ligase 2 (Siah2) and leucine-rich repeat and sterile alpha motif containing 1 (LRSAM1), mediated K63-linked ubiquitination of the N protein. SHVV infection upregulated the expression of Siah2 and LRSAM1, which maintained the stability of SHVV N. Besides, overexpression of Siah2 or LRSAM1 promoted SHVV replication, while knockdown of Siah2 or LRSAM1 inhibited SHVV replication. Deletion of the ligase domain of Siah2 or LRSAM1 did not affect their interactions with SHVV N but reduced the K63-linked ubiquitination of SHVV N and SHVV replication. In summary, Siah2 and LRSAM1 mediate K63-linked ubiquitination of SHVV N to facilitate SHVV replication, which provides novel insights into the role of the N proteins of negative-strand RNA viruses. IMPORTANCE: Ubiquitination of viral protein plays an important role in viral replication. However, the ubiquitination of the nucleoprotein (N) of negative-strand RNA viruses has rarely been investigated. This study aimed at investigating the ubiquitination of the N protein of a fish rhabdovirus SHVV (snakehead vesiculovirus), identifying the related host E3 ubiquitin ligases, and determining the role of SHVV N ubiquitination and host E3 ubiquitin ligases in viral replication. We found that SHVV N was ubiquitinated mainly via K63-linked ubiquitination, which was mediated by host E3 ubiquitin ligases Siah2 (Siah E3 ubiquitin protein ligase 2) and LRSAM1 (leucine-rich repeat and sterile alpha motif containing 1). The data suggested that Siah2 and LRSAM1 were hijacked by SHVV to ubiquitinate the N protein for viral replication, which exhibited novel anti-SHVV targets for drug design.


Asunto(s)
Nucleoproteínas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Vesiculovirus , Replicación Viral , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Vesiculovirus/fisiología , Vesiculovirus/metabolismo , Vesiculovirus/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células HEK293 , Proteínas Virales/metabolismo , Proteínas Virales/genética , Línea Celular , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo
2.
Mol Ther ; 32(7): 2264-2285, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702887

RESUMEN

Overexpression of vesicular stomatitis virus G protein (VSV-G) elevates the secretion of EVs known as gectosomes, which contain VSV-G. Such vesicles can be engineered to deliver therapeutic macromolecules. We investigated viral glycoproteins from several viruses for their potential in gectosome production and intracellular cargo delivery. Expression of the viral glycoprotein (viral glycoprotein from the Chandipura virus [CNV-G]) from the human neurotropic pathogen Chandipura virus in 293T cells significantly augments the production of CNV-G-containing gectosomes. In comparison with VSV-G gectosomes, CNV-G gectosomes exhibit heightened selectivity toward specific cell types, including primary cells and tumor cell lines. Consistent with the differential tropism between CNV-G and VSV-G gectosomes, cellular entry of CNV-G gectosome is independent of the Low-density lipoprotein receptor, which is essential for VSV-G entry, and shows varying sensitivity to pharmacological modulators. CNV-G gectosomes efficiently deliver diverse intracellular cargos for genomic modification or responses to stimuli in vitro and in the brain of mice in vivo utilizing a split GFP and chemical-induced dimerization system. Pharmacokinetics and biodistribution analyses support CNV-G gectosomes as a versatile platform for delivering macromolecular therapeutics intracellularly.


Asunto(s)
Vesiculovirus , Animales , Humanos , Ratones , Vesiculovirus/genética , Vesiculovirus/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células HEK293 , Proteínas Virales/metabolismo , Proteínas Virales/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral
3.
J Virol ; 97(8): e0024623, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37578231

RESUMEN

The phospho- (P) protein, the co-factor of the RNA polymerase large (L) protein, of vesicular stomatitis virus (VSV, a prototype of nonsegmented negative-strand RNA viruses) plays pivotal roles in transcription and replication. However, the precise mechanism underlying the transcriptional transactivation by the P protein has remained elusive. Here, using an in vitro transcription system and a series of deletion mutants of the P protein, we mapped a region encompassing residues 51-104 as a transactivation domain (TAD) that is critical for terminal de novo initiation, the initial step of synthesis of the leader RNA and anti-genome/genome, with the L protein. Site-directed mutagenesis revealed that conserved amino acid residues in three discontinuous L-binding sites within the TAD are essential for the transactivation activity of the P protein or important for maintaining its full activity. Importantly, relative inhibitory effects of TAD point mutations on synthesis of the full-length leader RNA and mRNAs from the 3'-terminal leader region and internal genes, respectively, of the genome were similar to those on terminal de novo initiation. Furthermore, any of the examined TAD mutations did not alter the gradient pattern of mRNAs synthesized from internal genes, nor did they induce the production of readthrough transcripts. These results suggest that these TAD mutations impact mainly terminal de novo initiation but rarely other steps (e.g., elongation, termination, internal initiation) of single-entry stop-start transcription. Consistently, the mutations of the essential or important amino acid residues within the P TAD were lethal or deleterious to VSV replication in host cells. IMPORTANCE RNA-dependent RNA polymerase L proteins of nonsegmented negative-strand RNA viruses belonging to the Mononegavirales order require their cognate co-factor P proteins or their counterparts for genome transcription and replication. However, exact roles of these co-factor proteins in modulating functions of L proteins during transcription and replication remain unknown. In this study, we revealed that three discrete L-binding motifs within a transactivation domain of the P protein of vesicular stomatitis virus, a prototypic nonsegmented negative-strand RNA virus, are required for terminal de novo initiation mediated by the L protein, which is the first step of synthesis of the leader RNA as well as genome/anti-genome.


Asunto(s)
Estomatitis Vesicular , Animales , Estomatitis Vesicular/genética , Activación Transcripcional , ARN Viral/genética , ARN Viral/metabolismo , Vesiculovirus/metabolismo , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/metabolismo , ARN Mensajero/genética , Aminoácidos/genética , Transcripción Genética , Replicación Viral/genética
4.
J Virol ; 97(6): e0037223, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37199666

RESUMEN

Viral oncolytic immunotherapy is a nascent field that is developing tools to direct the immune system to find and eliminate cancer cells. Safety is improved by using cancer-targeted viruses that infect or grow poorly on normal cells. The recent discovery of the low-density lipoprotein (LDL) receptor as the major vesicular stomatitis virus (VSV) binding site allowed for the creation of a Her2/neu-targeted replicating recombinant VSV (rrVSV-G) by eliminating the LDL receptor binding site in the VSV-G glycoprotein (gp) and adding a sequence coding for a single chain antibody (SCA) to the Her2/neu receptor. The virus was adapted by serial passage on Her2/neu-expressing cancer cells resulting in a virus that yielded a 15- to 25-fold higher titer following in vitro infection of Her2/neu+-expressing cell lines than that of Her2/neu-negative cells (~1 × 108/mL versus 4 × 106 to 8 × 106/mL). An essential mutation resulting in a higher titer virus was a threonine-to-arginine change that produced an N-glycosylation site in the SCA. Infection of Her2/neu+ subcutaneous tumors yielded >10-fold more virus on days 1 and 2 than Her2/neu- tumors, and virus production continued for 5 days in Her2/neu+ tumors compared with 3 days that of 3 days in Her2/neu- tumors. rrVSV-G cured 70% of large 5-day peritoneal tumors compared with a 10% cure by a previously targeted rrVSV with a modified Sindbis gp. rrVSV-G also cured 33% of very large 7-day tumors. rrVSV-G is a new targeted oncolytic virus that has potent antitumor capabilities and allows for heterologous combination with other targeted oncolytic viruses. IMPORTANCE A new form of vesicular stomatitis virus (VSV) was created that specifically targets and destroys cancer cells that express the Her2/neu receptor. This receptor is commonly found in human breast cancer and is associated with a poor prognosis. In laboratory tests using mouse models, the virus was highly effective at eliminating implanted tumors and creating a strong immune response against cancer. VSV has many advantages as a cancer treatment, including high levels of safety and efficacy and the ability to be combined with other oncolytic viruses to enhance treatment results or to create an effective cancer vaccine. This new virus can also be easily modified to target other cancer cell surface molecules and to add immune-modifying genes. Overall, this new VSV is a promising candidate for further development as an immune-based cancer therapy.


Asunto(s)
Neoplasias de la Mama , Glicoproteínas , Viroterapia Oncolítica , Virus Oncolíticos , Vesiculovirus , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Glicoproteínas/genética , Glicoproteínas/metabolismo , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Replicación Viral , Análisis de Supervivencia
5.
Virulence ; 14(1): 2196847, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37005771

RESUMEN

Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) plays an important role in regulating the replication of many viruses. However, it remains elusive whether and how hnRNPA1 regulates fish virus replication. In this study, the effects of twelve hnRNPs on the replication of snakehead vesiculovirus (SHVV) were screened. Three hnRNPs, one of which was hnRNPA1, were identified as anti-SHVV factors. Further verification showed that knockdown of hnRNPA1 promoted, while overexpression of hnRNPA1 inhibited, SHVV replication. SHVV infection reduced the expression level of hnRNPA1 and induced the nucleocytoplasmic shuttling of hnRNPA1. Besides, we found that hnRNPA1 interacted with the viral phosphoprotein (P) via its glycine-rich domain, but not with the viral nucleoprotein (N) or large protein (L). The hnRNPA1-P interaction competitively disrupted the viral P-N interaction. Moreover, we found that overexpression of hnRNPA1 enhanced the polyubiquitination of the P protein and degraded it through proteasomal and lysosomal pathways. This study will help understanding the function of hnRNPA1 in the replication of single-stranded negative-sense RNA viruses and providing a novel antiviral target against fish rhabdoviruses.


Asunto(s)
Nucleoproteínas , Infecciones por Rhabdoviridae , Animales , Ribonucleoproteína Nuclear Heterogénea A1/genética , Nucleoproteínas/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Peces , Vesiculovirus/genética , Vesiculovirus/metabolismo , Fosfoproteínas/metabolismo , Replicación Viral
6.
Sci Rep ; 11(1): 13253, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168211

RESUMEN

Chandipura virus (CHPV, a member of the Rhabdoviridae family) is an emerging pathogen that causes rapidly progressing influenza-like illness and acute encephalitis often leading to coma and death of the human host. Given several CHPV outbreaks in Indian sub-continent, recurring sporadic cases, neurological manifestation, and high mortality rate of this infection, CHPV is gaining global attention. The 'dark proteome' includes the whole proteome with special emphasis on intrinsically disordered proteins (IDP) and IDP regions (IDPR), which are proteins or protein regions that lack unique (or ordered) three-dimensional structures within the cellular milieu. These proteins/regions, however, play a number of vital roles in various biological processes, such as cell cycle regulation, control of signaling pathways, etc. and, therefore, are implicated in many human diseases. IDPs and IPPRs are also abundantly found in many viral proteins enabling their multifunctional roles in the viral life cycles and their capability to highjack various host systems. The unknown abundance of IDP and IDPR in CHPV, therefore, prompted us to analyze the dark proteome of this virus. Our analysis revealed a varying degree of disorder in all five CHPV proteins, with the maximum level of intrinsic disorder propensity being found in Phosphoprotein (P). We have also shown the flexibility of P protein using extensive molecular dynamics simulations up to 500 ns (ns). Furthermore, our analysis also showed the abundant presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs) in CHPV proteins. The identification of IDPs/IDPRs in CHPV proteins suggests that their disordered regions may function as potential interacting domains and may also serve as novel targets for disorder-based drug designs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Vesiculovirus/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Genoma Viral/genética , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Infecciones por Rhabdoviridae/virología , Alineación de Secuencia , Vesiculovirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
J Virol ; 95(16): e0059421, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037421

RESUMEN

Snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus isolated from diseased hybrid snakehead fish, has caused great economic losses in snakehead fish culture in China. The large (L) protein, together with its cofactor phosphoprotein (P), forms a P/L polymerase complex and catalyzes the transcription and replication of viral genomic RNA. In this study, the cellular heat shock protein 90 (Hsp90) was identified as an interacting partner of SHVV L protein. Hsp90 activity was required for the stability of SHVV L because Hsp90 dysfunction caused by using its inhibitor destabilized SHVV L and thereby suppressed SHVV replication via reducing viral RNA synthesis. SHVV L expressed alone was detected mainly in the insoluble fraction, and the insoluble L was degraded by Hsp90 dysfunction through the proteasomal pathway, while the presence of SHVV P promoted the solubility of SHVV L and the soluble L was degraded by Hsp90 dysfunction through the autophagy pathway. Collectively, our data suggest that Hsp90 contributes to the maturation of SHVV L and ensures the effective replication of SHVV, which exhibits an important anti-SHVV target. This study will help us to understand the role of Hsp90 in stabilizing the L protein and regulating the replication of negative-stranded RNA viruses. IMPORTANCE It has long been proposed that cellular proteins are involved in viral RNA synthesis via interacting with the viral polymerase protein. This study focused on identifying cellular proteins interacting with the SHVV L protein, studying the effects of their interactions on SHVV replication, and revealing the underlying mechanisms. We identified Hsp90 as an interacting partner of SHVV L and found that Hsp90 activity was required for SHVV replication. Hsp90 functioned in maintaining the stability of SHVV L. Inhibition of Hsp90 activity with its inhibitor degraded SHVV L through different pathways based on the solubility of SHVV L due to the presence or absence of SHVV P. Our data provide important insights into the role of Hsp90 in SHVV polymerase maturation, which will help us to understand the polymerase function of negative-stranded RNA viruses.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Vesiculovirus/fisiología , Proteínas Virales/metabolismo , Replicación Viral , Animales , Células Cultivadas , Peces , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Estabilidad Proteica , ARN Viral/biosíntesis , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Vesiculovirus/metabolismo
8.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33408176

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated. In this study, we developed two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All vectors were evaluated in the cotton rat animal model for their in vivo immunogenicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) delivery of rVSV-G and rVSV-F together completely protected the lower respiratory tract (lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were required to protect the upper respiratory tract (URT) completely. Reimmunization of RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, overall antibody responses were sufficient for protection, whereas CD4 and CD8 T cells were not necessary. A prime-boost immunization regimen increased both protection and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV vaccine candidates induce protective immunity and therefore represent a promising immunization regimen against RSV infection.IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors has demonstrated several practical and safety advantages over other virus vector systems and live attenuated vaccines. In this study, we developed safe and efficacious vaccine candidates by expressing the two major immunogenic RSV surface proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen. The main immune parameter responsible for protection was the antibody response. These vaccine candidates induced complete protection of both the upper and lower respiratory tracts.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Virus Sincitial Respiratorio Humano/inmunología , Vesiculovirus/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales de Fusión/inmunología , Administración a través de la Mucosa , Animales , Modelos Animales de Enfermedad , Vectores Genéticos , Inmunidad Celular , Inmunidad Humoral , Inmunización , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , Sigmodontinae , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vesiculovirus/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo
9.
Biomed Pharmacother ; 134: 110932, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33370632

RESUMEN

Oncolytic viruses have attracted attention as a promising strategy in cancer therapy owing to their ability to selectively infect and kill tumor cells, without affecting healthy cells. They also exert their anti-tumor effects by releasing immunostimulatory molecules from dying cancer cells. Several regulatory mechanisms, such as autophagy, contribute to the anti-tumor properties of oncolytic viruses. Autophagy is a conserved catabolic process in responses to various stresses, such as nutrient deprivation, hypoxia, and infection that produces energy by lysosomal degradation of intracellular contents. Autophagy can support infectivity and replication of the oncolytic virus and enhance their anti-tumor effects via mediating oncolysis, autophagic cell death, and immunogenic cell death. On the other hand, autophagy can reduce the cytotoxicity of oncolytic viruses by providing survival nutrients for tumor cells. In his review, we summarize various types of oncolytic viruses in clinical trials, their mechanism of action, and autophagy machinery. Furthermore, we precisely discuss the interaction between oncolytic viruses and autophagy in cancer therapy and their combinational effects on tumor cells.


Asunto(s)
Autofagia , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/metabolismo , Adenoviridae/metabolismo , Animales , Muerte Celular Autofágica , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Humanos , Muerte Celular Inmunogénica , Virus del Sarampión/metabolismo , Ratones , Neoplasias/metabolismo , Simplexvirus/metabolismo , Vesiculovirus/metabolismo , Replicación Viral
10.
Cytokine ; 138: 155388, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33271385

RESUMEN

Chinese tree shrews (Tupaia belangeri chinensis) are increasingly used as an alternative experimental animal to non-human primates in studying viral infections. Guanylate-binding proteins (GBP) belong to interferon (IFN)-inducible GTPases and defend the mammalian cell interior against diverse invasive pathogens. Previously, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5, and tGBP7) and found that tGBP1 showed antiviral activity against vesicular stomatitis virus (VSV) and type 1 herpes simplex virus (HSV-1) infections. Here, we showed that the anti-VSV activity of tGBP1 was independent of its GTPase activity and isoprenylation. In response to VSV infection, instead of regulating IFN expression and autophagy, tGBP1 competed with the VSV nucleocapsid (N) protein in binding to the VSV phosphoprotein (VSV-P), leading to the repression of the primary transcription of the VSV genome. These observations constitute the first report of the potential mechanism underlying the inhibition of VSV by GBP1.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Genoma Viral , Fosfoproteínas/genética , Tupaia/genética , Vesiculovirus/metabolismo , Animales , Autofagia , Células HEK293 , Humanos , Interferones/metabolismo , Proteínas de la Nucleocápside/química , Unión Proteica , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba , Proteínas Virales/química , Replicación Viral/efectos de los fármacos
11.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817219

RESUMEN

Adeno-associated viruses (AAVs) are dependoparvoviruses that have proven useful for therapeutic gene transfer; however, our understanding of host factors that influence AAV trafficking and transduction is still evolving. Here, we investigated the role of cellular calcium in the AAV infectious pathway. First, we demonstrated a critical role for the host Golgi compartment-resident ATP-powered calcium pump (secretory pathway calcium ATPase 1 [SPCA1]) encoded by the ATP2C1 gene in AAV infection. CRISPR-based knockout (KO) of ATP2C1 decreases transduction by different AAV serotypes. ATP2C1 KO does not appear to inhibit AAV binding, cellular uptake, or nuclear entry; however, capsids within ATP2C1 KO cells demonstrate dispersed and punctate trafficking distinct from the perinuclear, trans-Golgi pattern observed in normal cells. In addition, we observed a defect in the ability of AAV capsids to undergo conformational changes and support efficient vector genome transcription in ATP2C1 KO cells. The calcium chelator BAPTA-AM, which reduces cytosolic calcium, rescues the defective ATP2C1 KO phenotype and AAV transduction in vitro Conversely, the calcium ionophore ionomycin, which disrupts calcium gradients, blocks AAV transduction. Further, we demonstrated that modulating calcium in the murine brain using BAPTA-AM augments AAV gene expression in vivo Taking these data together, we postulate that the maintenance of an intracellular calcium gradient by the calcium ATPase and processing within the Golgi compartment are essential for priming the capsid to support efficient AAV genome transcription.IMPORTANCE Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency.


Asunto(s)
ATPasas Transportadoras de Calcio/genética , Calcio/metabolismo , Dependovirus/genética , Vectores Genéticos/metabolismo , Aparato de Golgi/metabolismo , Animales , Animales Recién Nacidos , Transporte Biológico/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Sistemas CRISPR-Cas , ATPasas Transportadoras de Calcio/deficiencia , Línea Celular Tumoral , Quelantes/farmacología , Dependovirus/efectos de los fármacos , Dependovirus/metabolismo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Eliminación de Gen , Vectores Genéticos/química , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/virología , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Inyecciones Intraventriculares , Ionomicina/farmacología , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Ratones Endogámicos C57BL , Técnicas Estereotáxicas , Transducción Genética , Vesiculovirus/genética , Vesiculovirus/metabolismo
12.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796062

RESUMEN

The viral protein Gag selects full-length HIV-1 RNA from a large pool of mRNAs as virion genome during virus assembly. Currently, the precise mechanism that mediates the genome selection is not understood. Previous studies have identified several sites in the 5' untranslated region (5' UTR) of HIV-1 RNA that are bound by nucleocapsid (NC) protein, which is derived from Gag during virus maturation. However, whether these NC binding sites direct HIV-1 RNA genome packaging has not been fully investigated. In this report, we examined the roles of single-stranded exposed guanosines at NC binding sites in RNA genome packaging using stable cell lines expressing competing wild-type and mutant HIV-1 RNAs. Mutant RNA packaging efficiencies were determined by comparing their prevalences in cytoplasmic RNA and in virion RNA. We observed that multiple NC binding sites affected RNA packaging; of the sites tested, those located within stem-loop 1 of the 5' UTR had the most significant effects. These sites were previously reported as the primary NC binding sites by using a chemical probe reverse-footprinting assay and as the major Gag binding sites by using an in vitro assay. Of the mutants tested in this report, substituting 3 to 4 guanosines resulted in <2-fold defects in packaging. However, when mutations at different NC binding sites were combined, severe defects were observed. Furthermore, combining the mutations resulted in synergistic defects in RNA packaging, suggesting redundancy in Gag-RNA interactions and a requirement for multiple Gag binding on viral RNA during HIV-1 genome encapsidation.IMPORTANCE HIV-1 must package its RNA genome during virus assembly to generate infectious viruses. To better understand how HIV-1 packages its RNA genome, we examined the roles of RNA elements identified as binding sites for NC, a Gag-derived RNA-binding protein. Our results demonstrate that binding sites within stem-loop 1 of the 5' untranslated region play important roles in genome packaging. Although mutating one or two NC-binding sites caused only mild defects in packaging, mutating multiple sites resulted in severe defects in genome encapsidation, indicating that unpaired guanosines act synergistically to promote packaging. Our results suggest that Gag-RNA interactions occur at multiple RNA sites during genome packaging; furthermore, there are functionally redundant binding sites in viral RNA.


Asunto(s)
Regiones no Traducidas 5' , VIH-1/genética , Proteínas de la Nucleocápside/genética , ARN Viral/genética , Empaquetamiento del Genoma Viral , Virión/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Animales , Emparejamiento Base , Sitios de Unión , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/metabolismo , Ingeniería Genética/métodos , Genoma Viral , Guanosina/química , Guanosina/metabolismo , Células HEK293 , VIH-1/metabolismo , Humanos , Ratones , Mutación , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/metabolismo , Motivos de Nucleótidos , Unión Proteica , ARN Viral/química , ARN Viral/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
13.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32641474

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause severe clinical disease in allograft recipients and infants infected in utero Virus-neutralizing antibodies defined in vitro have been proposed to confer protection against HCMV infection, and the virion envelope glycoprotein B (gB) serves as a major target of neutralizing antibodies. The viral fusion protein gB is nonfusogenic on its own and requires glycoproteins H (gH) and L (gL) for membrane fusion, which is in contrast to requirements of related class III fusion proteins, including vesicular stomatitis virus glycoprotein G (VSV-G) or baculovirus gp64. To explore requirements for gB's fusion activity, we generated a set of chimeras composed of gB and VSV-G or gp64, respectively. These gB chimeras were intrinsically fusion active and led to the formation of multinucleated cell syncytia when expressed in the absence of other viral proteins. Utilizing a panel of virus-neutralizing gB-specific monoclonal antibodies (MAbs), we could demonstrate that syncytium formation of the fusogenic gB/VSV-G chimera can be significantly inhibited by only a subset of neutralizing MAbs which target antigenic domain 5 (AD-5) of gB. This observation argues for differential modes of action of neutralizing anti-gB MAbs and suggests that blocking the membrane fusion function of gB could be one mechanism of antibody-mediated virus neutralization. In addition, our data have important implications for the further understanding of the conformation of gB that promotes membrane fusion as well as the identification of structures in AD-5 that could be targeted by antibodies to block this early step in HCMV infection.IMPORTANCE HCMV is a major global health concern, and antiviral chemotherapy remains problematic due to toxicity of available compounds and the emergence of drug-resistant viruses. Thus, an HCMV vaccine represents a priority for both governmental and pharmaceutical research programs. A major obstacle for the development of a vaccine is a lack of knowledge of the nature and specificities of protective immune responses that should be induced by such a vaccine. Glycoprotein B of HCMV is an important target for neutralizing antibodies and, hence, is often included as a component of intervention strategies. By generation of fusion-active gB chimeras, we were able to identify target structures of neutralizing antibodies that potently block gB-induced membrane fusion. This experimental system provides an approach to screen for antibodies that interfere with gB's fusogenic activity. In summary, our data will likely contribute to both rational vaccine design and the development of antibody-based therapies against HCMV.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Citomegalovirus/genética , Proteínas Mutantes Quiméricas/genética , Proteínas del Envoltorio Viral/genética , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Anticuerpos Antivirales/farmacología , Sitios de Unión , Fusión Celular , Línea Celular , Citomegalovirus/efectos de los fármacos , Citomegalovirus/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/virología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Expresión Génica , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Células Gigantes/ultraestructura , Células Gigantes/virología , Células HEK293 , Humanos , Ratones , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Cultivo Primario de Células , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/virología , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo
14.
Annu Rev Biochem ; 89: 21-43, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569520

RESUMEN

My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).


Asunto(s)
Calnexina/genética , Calreticulina/genética , Interacciones Huésped-Patógeno/genética , Virus de la Influenza A/genética , Picornaviridae/genética , Proteínas Virales/genética , Virología/historia , Animales , Calnexina/química , Calnexina/metabolismo , Calreticulina/química , Calreticulina/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Endosomas/metabolismo , Endosomas/virología , Regulación de la Expresión Génica , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Virus de la Influenza A/metabolismo , Picornaviridae/metabolismo , Pliegue de Proteína , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Internalización del Virus
15.
Virology ; 543: 54-62, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32056847

RESUMEN

Hantaviruses are rodent-borne hemorrhagic fever viruses leading to serious diseases. Viral attachment and entry represent the first steps in virus transmission and are promising targets for antiviral therapeutic intervention. Here we investigated receptor use in human airway epithelium of the Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV). Using a biocontained recombinant vesicular stomatitis virus pseudotype platform, we provide first evidence for a role of the cellular phosphatidylserine (PS) receptors of the T-cell immunoglobulin and mucin (TIM) protein family in HTNV and ANDV infection. In line with previous studies, HTNV, but not ANDV, was able to use glycosaminoglycan heparan sulfate and αvß3 integrin as co-receptors. In sum, our studies demonstrate for the first time that hantaviruses make use of apoptotic mimicry for infection of human airway epithelium, which may explain why these viruses can easily break the species barrier.


Asunto(s)
Virus Hantaan/metabolismo , Glicoproteínas de Membrana/metabolismo , Orthohantavirus/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Mucosa Respiratoria/virología , Proteínas del Envoltorio Viral/metabolismo , Animales , Bacteriocinas/farmacología , Línea Celular Tumoral , Células Epiteliales/metabolismo , Células Epiteliales/virología , Virus Hantaan/efectos de los fármacos , Virus Hantaan/patogenicidad , Virus Hantaan/fisiología , Orthohantavirus/fisiología , Haplorrinos , Heparitina Sulfato/farmacología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Imitación Molecular , Péptidos/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Mucosa Respiratoria/metabolismo , Vesiculovirus/metabolismo , Vesiculovirus/fisiología , Tirosina Quinasa del Receptor Axl
16.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31896592

RESUMEN

Vesicular stomatitis virus (VSV) is an archetypical member of Mononegavirales, viruses with a genome of negative-sense single-stranded RNA (-ssRNA). Like other viruses of this order, VSV encodes a unique polymerase, a complex of viral L (large, the enzymatic component) protein and P (phosphoprotein, a cofactor component). The L protein has a modular layout consisting of a ring-shaped core trailed by three accessory domains and requires an N-terminal segment of P (P N-terminal disordered [PNTD]) to perform polymerase activity. To date, a binding site for P on L had not been described. In this report, we show that the connector domain of the L protein, which previously had no assigned function, binds a component of PNTD We further show that this interaction is a positive regulator of viral RNA synthesis, and that the interfaces mediating it are conserved in other members of Mononegavirales Finally, we show that the connector-P interaction fits well into the existing structural information of VSV L.IMPORTANCE This study represents the first functional assignment of the connector domain of a Mononegavirales L protein. Furthermore, this study localizes P polymerase cofactor activity to specific amino acids. The functional necessity of this interaction, combined with the uniqueness of L and P proteins to the order Mononegavirales, makes disruption of the P-connector site a potential target for developing antivirals against other negative-strand RNA viruses. Furthermore, the connector domain as an acceptor site for the P protein represents a new understanding of Mononegavirales L protein biology.


Asunto(s)
Fosfoproteínas/química , Vesiculovirus/química , Proteínas Virales/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
J Biosci ; 44(2)2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31180044

RESUMEN

ErbB-3 binding protein 1 (Ebp1) is a host protein which binds ErbB-3 receptor to induce signalling events for cell growth regulation. In addition, Ebp1 also interacts with ribonucleoprotein complexes. In recent times, Ebp1 was found to play an antagonistic role in viral infections caused by Influenza and Rinderpest viruses. In our present work we have tried to understand the role of Ebp1 in Chandipura virus (CHPV) infection. We have observed an induction in Ebp1 expression upon CHPV infection similar to other viruses. However, unlike other viruses an overexpressed Ebp1 only reduces viral protein expression, but does not affect its progeny formation. Additionally, this effect is being carried out in an indirect manner, as there is no interaction between Ebp1 and viral proteins. This is despite Ebp1's presence in viral inclusion bodies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Interacciones Huésped-Patógeno/genética , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Vesiculovirus/genética , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Regulación de la Expresión Génica , Humanos , Cuerpos de Inclusión Viral/química , Neuronas/virología , Plásmidos/química , Plásmidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Transfección , Células Vero , Vesiculovirus/crecimiento & desarrollo , Vesiculovirus/metabolismo , Ensayo de Placa Viral
18.
Biochem Biophys Res Commun ; 514(2): 538-544, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31060775

RESUMEN

Successful HIV-1 infection and subsequent replication deeply depend on how the virus usurps the host cell machinery. Identification and functional characterization of these host factors may represent a critical strategy for developing novel anti-HIV-1 therapy. Here, expression cloning with a cDNA expression library identified as an inhibitor of HIV-1 infection, a carboxy-terminally truncated form of human POZ/BTB and AT-hook- containing Zinc finger protein 1 (PATZ1), a transcriptional regulatory factor implicated in development and cancer. Knockdown or knockout of endogenous PATZ1 revealed a supportive role of PATZ1 in HIV-1 infection, but not in transduction with murine leukemia virus-based retroviral vector. More specifically, knockdown or knockout of PATZ1 impaired the viral cDNA synthesis but not the entry process and expression of two PATZ1 isoforms in PATZ1-KO cells restored susceptibility to HIV-1 infection. These results indicate that PATZ1 plays an important role in HIV-1 infection.


Asunto(s)
VIH-1/genética , Interacciones Huésped-Patógeno/genética , Factores de Transcripción de Tipo Kruppel/genética , Linfocitos/virología , ARN Viral/genética , Proteínas Represoras/genética , Animales , Línea Celular Tumoral , Regulación de la Expresión Génica , Biblioteca de Genes , Células HEK293 , VIH-1/metabolismo , VIH-1/patogenicidad , Humanos , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/metabolismo , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/metabolismo , Linfocitos/patología , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/biosíntesis , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Transducción de Señal , Vesiculovirus/genética , Vesiculovirus/metabolismo
19.
Nat Commun ; 10(1): 2098, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068585

RESUMEN

Hepatitis D virus (HDV) doesn't encode envelope proteins for packaging of its ribonucleoprotein (RNP) and typically relies on the surface glycoproteins (GPs) from hepatitis B virus (HBV) for virion assembly, envelopment and cellular transmission. HDV RNA genome can efficiently replicate in different tissues and species, raising the possibility that it evolved, and/or is still able to transmit, independently of HBV. Here we show that alternative, HBV-unrelated viruses can act as helper viruses for HDV. In vitro, envelope GPs from several virus genera, including vesiculovirus, flavivirus and hepacivirus, can package HDV RNPs, allowing efficient egress of HDV particles in the extracellular milieu of co-infected cells and subsequent entry into cells expressing the relevant receptors. Furthermore, HCV can propagate HDV infection in the liver of co-infected humanized mice for several months. Further work is necessary to evaluate whether HDV is currently transmitted by HBV-unrelated viruses in humans.


Asunto(s)
Coinfección/transmisión , Hepatitis D/transmisión , Virus de la Hepatitis Delta/fisiología , Ensamble de Virus , Animales , Línea Celular Tumoral , Coinfección/virología , Flavivirus/metabolismo , Hepacivirus/metabolismo , Hepacivirus/patogenicidad , Hepatitis D/virología , Virus de la Hepatitis Delta/aislamiento & purificación , Virus de la Hepatitis Delta/patogenicidad , Hepatocitos/trasplante , Hepatocitos/virología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Cultivo Primario de Células , ARN Viral/aislamiento & purificación , Ribonucleoproteínas/metabolismo , Vesiculovirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismo
20.
Mol Biol Rep ; 46(3): 3371-3379, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31006094

RESUMEN

Colorectal cancer (CRC) is the third most common cancer in both men and women. Oncolytic viral-based therapy methods seem to be promising for CRC treatment. Vesicular stomatitis virus (VSV) is considered as a potent candidate in viral therapy for several tumors. VSV particles with mutated matrix (M) protein are capable of initiating cell death cascades while not being harmful to the immune system. In the current study, the effects of the VSV M-protein was investigated on the apoptosis of the colorectal cancer SW480 cell. Wild-type, M51R, and ΔM51 mutants VSV M-protein genes were cloned into the PCDNA3.1 vector and transfected into the SW480 cells. The results of the MTT assay, Western blotting, and Caspase 3, 8, and 9 measurement, illustrated that both wild and M51R mutant M-proteins can destroy the SW480 colorectal cancer cells. DAPI/TUNEL double-staining reconfirmed the apoptotic effects of the M-protein expression. The ΔM51 mutant M-protein is effective likewise M51R, somehow it can be considered as a safer substitution.


Asunto(s)
Apoptosis/fisiología , Vesiculovirus/metabolismo , Proteínas de la Matriz Viral/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Humanos , Proteínas Mutantes/genética , Mutación , Viroterapia Oncolítica/métodos , Estomatitis Vesicular/metabolismo , Vesiculovirus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA