Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39020255

RESUMEN

BACKGROUND: Vibrio vulnificus NCIMB2137, a Gram-negative, metalloprotease negative estuarine strain was isolated from a diseased eel. A 45 kDa chymotrypsin-like alkaline serine protease known as VvsA has been recently reported as one of the major virulence factor responsible for the pathogenesis of this strain. The vvsA gene along with a downstream gene vvsB, whose function is still unknown constitute an operon designated as vvsAB. OBJECTIVE: This study examines the contribution of VvsB to the functionality of VvsA. METHOD: In this study, VvsB was individually expressed using Rapid Translation System (RTS system), followed by an analysis of its role in regulating the serine protease activity of VvsA. RESULT: The proteolytic activity of VvsA increased upon the addition of purified VvsB to the culture supernatant of V. vulnificus. However, the attempts of protein expression using an E. coli system revealed a noteworthy observation that protein expression from the vvsA gene exhibited higher protease activity compared to that from the vvsAB gene within the cytoplasmic fraction. These findings suggest an intricate interplay between VvsB and VvsA, where VvsB potentially interacts with VvsA inside the bacterium and suppress the proteolytic activity. While outside the bacterial milieu, VvsB appears to stimulate the activation of inactive VvsA. CONCLUSION: The findings suggest that Vibrio vulnificus regulates VvsA activity through the action of VvsB, both intracellularly and extracellularly, to ensure its survival.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Serina Proteasas , Vibrio vulnificus , Vibrio vulnificus/genética , Vibrio vulnificus/enzimología , Vibrio vulnificus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Serina Proteasas/metabolismo , Serina Proteasas/genética , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Animales , Proteolisis , Operón , Anguilas/microbiología , Escherichia coli/genética , Escherichia coli/metabolismo , Vibriosis/microbiología , Vibriosis/veterinaria
2.
Nat Commun ; 15(1): 6218, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043696

RESUMEN

Multiple bacterial genera take advantage of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin to invade host cells. Secretion of the MARTX toxin by Vibrio vulnificus, a deadly opportunistic pathogen that causes primary septicemia, the precursor of sepsis, is a major driver of infection; however, the molecular mechanism via which the toxin contributes to septicemia remains unclear. Here, we report the crystal and cryo-electron microscopy (EM) structures of a toxin effector duet comprising the domain of unknown function in the first position (DUF1)/Rho inactivation domain (RID) complexed with human targets. These structures reveal how the duet is used by bacteria as a potent weapon. The data show that DUF1 acts as a RID-dependent transforming NADase domain (RDTND) that disrupts NAD+ homeostasis by hijacking calmodulin. The cryo-EM structure of the RDTND-RID duet complexed with calmodulin and Rac1, together with immunological analyses in vitro and in mice, provide mechanistic insight into how V. vulnificus uses the duet to suppress ROS generation by depleting NAD(P)+ and modifying Rac1 in a mutually-reinforcing manner that ultimately paralyzes first line immune responses, promotes dissemination of invaders, and induces sepsis. These data may allow development of tools or strategies to combat MARTX toxin-related human diseases.


Asunto(s)
Toxinas Bacterianas , Microscopía por Crioelectrón , Vibrio vulnificus , Vibrio vulnificus/metabolismo , Vibrio vulnificus/patogenicidad , Animales , Humanos , Ratones , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Femenino , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sepsis/microbiología , Dominios Proteicos , Vibriosis/microbiología , NAD+ Nucleosidasa/metabolismo , NAD+ Nucleosidasa/química , Cristalografía por Rayos X
3.
Proc Natl Acad Sci U S A ; 121(25): e2316143121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861595

RESUMEN

Vibrio vulnificus causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host Ras-related proteins in brain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.


Asunto(s)
Toxinas Bacterianas , Vibrio vulnificus , Proteínas de Unión al GTP rab , Animales , Femenino , Humanos , Ratones , Factores de Ribosilacion-ADP/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Células HEK293 , Ratones Endogámicos ICR , Proteolisis , Proteínas de Unión al GTP rab/metabolismo , Vibriosis/microbiología , Vibriosis/metabolismo , Vibrio vulnificus/metabolismo , Vibrio vulnificus/patogenicidad
4.
J Med Invest ; 71(1.2): 102-112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735705

RESUMEN

Vibrio vulnificus (V. vulnificus) is a halophilic gram-negative bacterium that inhabits coastal warm water and induce severe diseases such as primary septicemia. To investigate the mechanisms of rapid bacterial translocation on intestinal infection, we focused on outer membrane vesicles (OMVs), which are extracellular vesicles produced by Gram-negative bacteria and deliver virulence factors. However, there are very few studies on the pathogenicity or contents of V. vulnificus OMVs (Vv-OMVs). In this study, we investigated the effects of Vv-OMVs on host cells. Epithelial cells INT407 were stimulated with purified OMVs and morphological alterations and levels of lactate dehydrogenase (LDH) release were observed. In cells treated with OMVs, cell detachment without LDH release was observed, which exhibited different characteristics from cytotoxic cell detachment observed in V. vulnificus infection. Interestingly, OMVs from a Vibrio Vulnificus Hemolysin (VVH) and Multifunctional-autoprocessing repeats-in -toxin (MARTX) double-deletion mutant strain also caused cell detachment without LDH release. Our results suggested that the proteolytic function of a serine protease contained in Vv-OMVs may contribute to pathogenicity of V. vulnificus by assisting bacterial translocation. This study reveals a new pathogenic mechanism during V. vulnificus infections. J. Med. Invest. 71 : 102-112, February, 2024.


Asunto(s)
Vesículas Extracelulares , Vibrio vulnificus , Vibrio vulnificus/patogenicidad , Vibrio vulnificus/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Proteínas Hemolisinas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Membrana Externa Bacteriana/metabolismo , Células Epiteliales/microbiología
5.
mBio ; 15(5): e0033024, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38564689

RESUMEN

Bacterial enhancer-binding proteins (bEBPs) acquire a transcriptionally active state via phosphorylation. However, transcriptional activation by the dephosphorylated form of bEBP has been observed in DctD, which belongs to Group I bEBP. The formation of a complex between dephosphorylated DctD (d-DctD) and dephosphorylated IIAGlc (d-IIAGlc) is a prerequisite for the transcriptional activity of d-DctD. In the present study, characteristics of the transcriptionally active complex composed of d-IIAGlc and phosphorylation-deficient DctD (DctDD57Q) of Vibrio vulnificus were investigated in its multimeric conformation and DNA-binding ability. DctDD57Q formed a homodimer that could not bind to the DNA. In contrast, when DctDD57Q formed a complex with d-IIAGlc in a 1:1 molar ratio, it produced two conformations: dimer and dodecamer of the complex. Only the dodecameric complex exhibited ATP-hydrolyzing activity and DNA-binding affinity. For successful DNA-binding and transcriptional activation by the dodecameric d-IIAGlc/DctDD57Q complex, extended upstream activator sequences were required, which encompass the nucleotide sequences homologous to the known DctD-binding site and additional nucleotides downstream. This is the first report to demonstrate the molecular characteristics of a dephosphorylated bEBP complexed with another protein to form a transcriptionally active dodecameric complex, which has an affinity for a specific DNA-binding sequence.IMPORTANCEResponse regulators belonging to the bacterial two-component regulatory system activate the transcription initiation of their regulons when they are phosphorylated by cognate sensor kinases and oligomerized to the appropriate multimeric states. Recently, it has been shown that a dephosphorylated response regulator, DctD, could activate transcription in a phosphorylation-independent manner in Vibrio vulnificus. The dephosphorylated DctD activated transcription as efficiently as phosphorylated DctD when it formed a complex with dephosphorylated form of IIAGlc, a component of the glucose-phosphotransferase system. Functional mimicry of this complex with the typical form of transcriptionally active phosphorylated DctD led us to study the molecular characteristics of this heterodimeric complex. Through systematic analyses, it was surprisingly determined that a multimer constituted with 12 complexes gained the ability to hydrolyze ATP and recognize specific upstream activator sequences containing a typical inverted-repeat sequence flanked by distinct nucleotides.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Vibrio vulnificus , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Fosforilación , Unión Proteica , Multimerización de Proteína , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Transcripción Genética , Activación Transcripcional , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Vibrio vulnificus/química
6.
Protein Sci ; 33(3): e4884, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145310

RESUMEN

Vibrio vulnificus (vv) is a multidrug-resistant human bacterial pathogen whose prevalence is expected to increase over the years. Transketolases (TK), transferases catalyzing two reactions of the nonoxidative branch of the pentose-phosphate pathway and therefore linked to several crucial metabolic pathways, are potential targets for new drugs against this pathogen. Here, the vvTK is crystallized and its structure is solved at 2.1 Å. A crown of 6 histidyl residues is observed in the active site and expected to participate in the thiamine pyrophosphate (cofactor) activation. Docking of fructose-6-phosphate and ferricyanide used in the activity assay, suggests that both substrates can bind vvTK simultaneously. This is confirmed by steady-state kinetics showing a sequential mechanism, on the contrary to the natural transferase reaction which follows a substituted mechanism. Inhibition by the I38-49 inhibitor (2-(4-ethoxyphenyl)-1-(pyrimidin-2-yl)-1H-pyrrolo[2,3-b]pyridine) reveals for the first time a cooperative behavior of a TK and docking experiments suggest a previously undescribed binding site at the interface between the pyrophosphate and pyridinium domains.


Asunto(s)
Transcetolasa , Vibrio vulnificus , Humanos , Transcetolasa/química , Transcetolasa/metabolismo , Vibrio vulnificus/metabolismo , Cinética , Conducta Cooperativa , Tiamina Pirofosfato/metabolismo , Transferasas/metabolismo
7.
Appl Microbiol Biotechnol ; 107(24): 7571-7580, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796305

RESUMEN

Antimicrobial peptides (AMPs), such as urechistachykinin I (LRQSQFVGSR-NH2), derived from urechis unicinctus, have demonstrated antimicrobial activities. It exhibits low cytotoxicity and selectivity between microbial and mammalian cells suggesting its potent antimicrobial ability. However, the underlying antimicrobial mechanisms remain unknown. Herein, we elucidated the antibacterial action against Vibrio vulnificus, focusing on the reactive oxygen species (ROS). ROS is crucial for antibiotic-mediated killing and oxidative stress. After treatment with urechistachykinin I, superoxide anions and hydroxyl radicals increase, and the overproduction of ROS leads to oxidative damage and destruction of the redox system. Oxidation of the defense system like glutathione or glutathione peroxidase 4 illustrates the dysfunction of cellular metabolism and induces lipid peroxidation attributed to depolarization and integrity brokerage. Cell death demonstrated these properties, and additional experiments, including iron accumulation, liperfluo, and DNA fragmentation, were promoted. The results demonstrated that urechistachykinin I-induced ferroptosis-like death in Vibrio vulnificus is dependent on ROS production. KEY POINTS: • Urechistachykinin I induce reactive oxygen species production • Urechistachykinin I cause oxidative damaged on the V. vulnificus • Urechistachykinin I ferroptosis-like death in V. vulnificus.


Asunto(s)
Antiinfecciosos , Ferroptosis , Vibrio vulnificus , Animales , Especies Reactivas de Oxígeno/metabolismo , Vibrio vulnificus/metabolismo , Mamíferos/metabolismo
8.
Mol Microbiol ; 119(1): 59-73, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36420630

RESUMEN

The marine pathogen Vibrio vulnificus senses and responds to environmental stimuli via two chemosensory systems and 42-53 chemoreceptors. Here, we present an analysis of the V. vulnificus Aer2 chemoreceptor, VvAer2, which is the first V. vulnificus chemoreceptor to be characterized. VvAer2 is related to the Aer2 receptors of other gammaproteobacteria, but uncharacteristically contains three PAS domains (PAS1-3), rather than one or two. Using an E. coli chemotaxis hijack assay, we determined that VvAer2, like other Aer2 receptors, senses and responds to O2 . All three VvAer2 PAS domains bound pentacoordinate b-type heme and exhibited similar O2 affinities. PAS2 and PAS3 both stabilized O2 via conserved Iß-Trp residues, but PAS1, which was easily oxidized in vitro, was unaffected by Iß-Trp replacement. Our results support a model in which PAS1 is largely dispensable for O2 -mediated signaling, whereas PAS2 modulates PAS3 signaling, and PAS3 signals to the downstream domains. Each PAS domain appeared to be positionally optimized, because PAS swapping caused altered signaling properties, and neither PAS1 nor PAS2 could replace PAS3. Our findings strengthen previous conclusions that Aer2 receptors are O2 sensors, but with distinct N-terminal domain arrangements that facilitate, modulate and tune responses based on environmental signals.


Asunto(s)
Escherichia coli , Vibrio vulnificus , Escherichia coli/metabolismo , Vibrio vulnificus/metabolismo , Hemo/metabolismo , Proteínas Portadoras/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo
9.
Res Microbiol ; 174(1-2): 103992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36122890

RESUMEN

New drugs are urgently required for the treatment of infections due to an increasing number of new strains of diseases-causing pathogens and antibiotic-resistant bacteria. A library of drugs approved by Food and Drug Administration was screened for efficacy against Vibrio vulnificus using antimicrobial assays. We found that otilonium bromide showed potent antimicrobial activity against V.vulnificus and had a synergistic effect in combination with antibiotics. Field emission transmission electron microscope images revealed that otilonium bromide caused cell division defects in V.vulnificus. Moreover, it significantly inhibited V.vulnificus swarming motility and adhesion to host cells at concentrations lower than the minimum inhibitory concentration. To investigate its inhibitory action mechanisms, we examined the effect of otilonium bromide on the expression levels of several proteins crucial for V.vulnificus growth, motility, and adhesion. It decreased the protein expression levels of cAMP receptor protein and flagellin B, but not HlyU or OmpU. In addition, otilonium bromide significantly decreased the expression levels of outer membrane protein TolCV1, thus inhibiting RtxA1 toxin secretion and substantially reducing V.vulnificus cytotoxicity to host cells. Collectively, these findings suggest that otilonium bromide may be considered as a promising candidate for treating V.vulnificus infections.


Asunto(s)
Vibriosis , Vibrio vulnificus , Humanos , Vibrio vulnificus/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Pruebas de Sensibilidad Microbiana , Vibriosis/microbiología
10.
Biol Pharm Bull ; 45(11): 1596-1601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36328494

RESUMEN

Vibrio vulnificus is a Gram-negative estuarine bacterium that causes infection in immuno-compromised patients, eels, and shrimp. V. vulnificus NCIMB2137, a metalloprotease-negative strain isolated from a diseased eel, produces a 45-kDa chymotrypsin-like alkaline serine protease known as VvsA. The gene encoding vvsA also includes another gene, vvsB with an unknown function; however, it is assumed to be an essential molecular chaperone for the maturation of VvsA. In the present study, we used an in vitro cell-free translation system to examine the maturation pathway of VvsA. We individually expressed the vvsA and vvsB genes and detected their mRNAs. However, the sample produced from vvsA did not exhibit protease activity. A sodium dodecyl sulfate (SDS) analysis detected the VvsB protein, but not the VvsA protein. A Western blotting analysis using a histidine (His)-tag at the amino terminus of proteins also showed no protein production by vvsA. These results suggested the translation, but not the transcription of vvsA. Factors derived from Escherichia coli were used in the in vitro cell-free translation system employed in the present study. The operon of the serine protease gene containing vvsA and vvsB was expressed in E. coli. Although serine proteases were produced, they were cleaved at different sites and no active mature forms were detected. These results indicate that the operon encoding vvsA and vvsB is a gene constructed to be specifically expressed in V. vulnificus.


Asunto(s)
Vibrio vulnificus , Humanos , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Serina Proteasas/genética , Serina Proteasas/metabolismo , Escherichia coli/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
11.
J Mol Biol ; 434(18): 167668, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35667471

RESUMEN

Translational riboswitches are bacterial gene regulatory elements found in the 5'-untranslated region of mRNAs. They operate through a conformational refolding reaction that is triggered by a concentration change of a modulating small molecular ligand. The translation initiation region (TIR) is either released from or incorporated into base pairing interactions through the conformational switch. Hence, initiation of translation is regulated by the accessibility of the Shine-Dalgarno sequence and start codon. Interaction with the 30S ribosome is indispensable for the structural switch between functional OFF and ON states. However, on a molecular level it is still not fully resolved how the ribosome is accommodated near or at the translation initiation region in the context of translational riboswitches. The standby model of translation initiation postulates a binding site where the mRNA enters the ribosome and where it resides until the initiation site becomes unstructured and accessible. We here investigated the adenine-sensing riboswitch from Vibrio vulnificus. By application of a 19F labelling strategy for NMR spectroscopy that utilizes ligation techniques to synthesize differentially 19F labelled riboswitch molecules we show that nucleotides directly downstream of the riboswitch domain are first involved in productive interaction with the 30S ribosomal subunit. Upon the concerted action of ligand and the ribosomal protein rS1 the TIR becomes available and subsequently the 30S ribosome can slide towards the TIR. It will be interesting to see whether this is a general feature in translational riboswitches or if riboswitches exist where this region is structured and represent yet another layer of regulation.


Asunto(s)
Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Bacteriano , Subunidades Ribosómicas Pequeñas Bacterianas , Riboswitch , Vibrio vulnificus , Regiones no Traducidas 5'/genética , Ligandos , Biosíntesis de Proteínas/genética , ARN Bacteriano/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
12.
Commun Biol ; 5(1): 622, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761021

RESUMEN

Stressosomes are stress-sensing protein complexes widely conserved among bacteria. Although a role in the regulation of the general stress response is well documented in Gram-positive bacteria, the activating signals are still unclear, and little is known about the physiological function of stressosomes in the Gram-negative bacteria. Here we investigated the stressosome of the Gram-negative marine pathogen Vibrio vulnificus. We demonstrate that it senses oxygen and identified its role in modulating iron-metabolism. We determined a cryo-electron microscopy structure of the VvRsbR:VvRsbS stressosome complex, the first solved from a Gram-negative bacterium. The structure points to a variation in the VvRsbR and VvRsbS stoichiometry and a symmetry breach in the oxygen sensing domain of VvRsbR, suggesting how signal-sensing elicits a stress response. The findings provide a link between ligand-dependent signaling and an output - regulation of iron metabolism - for a stressosome complex.


Asunto(s)
Vibrio vulnificus , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Oxígeno/metabolismo , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
13.
Appl Microbiol Biotechnol ; 106(9-10): 3721-3734, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35488933

RESUMEN

Autoinducer-2 (AI-2), a quorum-sensing signal molecule from the human pathogen Vibrio vulnificus, was assessed for its effect on the gut microbiome of mice. For this, we employed 16S rRNA sequencing to compare the gut microbiome of mice infected with either wild-type V. vulnificus or with the isotype ΔluxS that has a deletion in luxS which encodes the biosynthetic function of AI-2. The relative ratio of wild-type Vibrio species in the jejunum and ileum of mice infected with the wild type was significantly higher than that in mice infected with ΔluxS, suggesting that AI-2 plays an important role in the colonization of V. vulnificus in the small intestine. The bacterial composition in the gut of mice infected with ΔluxS comprises a higher proportion of Firmicutes, composed mainly of Lactobacillus, compared to the mice infected with wild-type cells. In the large intestine, Vibrio species were barely detected regardless of genetic background. Three Lactobacillus spp. isolated from fecal samples from mice infected with ΔluxS manifested significant antibacterial activities against V. vulnificus. Culture supernatants from these three species were dissolved by HPLC, and a substance in fractions showing inhibitory activity against V. vulnificus was determined to be lactic acid. Our results suggest that luxS in V. vulnificus affects not only the ability of the species to colonize the host gut but also its susceptibility to the growth-inhibiting activity of commensal bacteria including Lactobacillus. KEY POINTS: • Gut microbiomes of ΔluxS-infected and WT Vibrio-infected mice differed greatly. • Difference was most prominent in the jejunum and ileum compared to the duodenum or large intestine. • In the small and large intestines of mice, the relative proportions of Vibrio and Lactobacillus species showed a negative relationship. • Effector molecules produced by Lactobacillus in mouse gut inhibit Vibrio growth.


Asunto(s)
Microbioma Gastrointestinal , Vibrio vulnificus , Vibrio , Animales , Proteínas Bacterianas/genética , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Regulación Bacteriana de la Expresión Génica , Lactobacillus/metabolismo , Ratones , Percepción de Quorum , ARN Ribosómico 16S/genética , Vibrio/genética , Vibrio/metabolismo , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
14.
Mar Drugs ; 20(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35447923

RESUMEN

The glycoside hydrolase family 17 ß-1,3-glucanase of Vibrio vulnificus (VvGH17) has two unknown regions in the N- and C-termini. Here, we characterized these domains by preparing mutant enzymes. VvGH17 demonstrated hydrolytic activity of ß-(1→3)-glucan, mainly producing laminaribiose, but not of ß-(1→3)/ß-(1→4)-glucan. The C-terminal-truncated mutants (ΔC466 and ΔC441) showed decreased activity, approximately one-third of that of the WT, and ΔC415 lost almost all activity. An analysis using affinity gel containing laminarin or barley ß-glucan revealed a shift in the mobility of the ΔC466, ΔC441, and ΔC415 mutants compared to the WT. Tryptophan residues showed a strong affinity for carbohydrates. Three of four point-mutations of the tryptophan in the C-terminus (W472A, W499A, and W542A) showed a reduction in binding ability to laminarin and barley ß-glucan. The C-terminus was predicted to have a ß-sandwich structure, and three tryptophan residues (Trp472, Trp499, and Trp542) constituted a putative substrate-binding cave. Linker and substrate-binding functions were assigned to the C-terminus. The N-terminal-truncated mutants also showed decreased activity. The WT formed a trimer, while the N-terminal truncations formed monomers, indicating that the N-terminus contributed to the multimeric form of VvGH17. The results of this study are useful for understanding the structure and the function of GH17 ß-1,3-glucanases.


Asunto(s)
Vibrio vulnificus , beta-Glucanos , Glucanos/química , Glicósido Hidrolasas/metabolismo , Especificidad por Sustrato , Triptófano , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , beta-Glucanos/química
15.
Inflammation ; 45(4): 1496-1506, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35129769

RESUMEN

We previously reported that the Vibrio vulnificus hemolysin A (VvhA) protein elicited good immune protection and could effectively control V. vulnificus infection in mice. However, its molecular mechanism remains unknown. We hypothesized that hemolysin A induces an immunoprotective response via IL-21 regulation. To demonstrate this, IL-21 expression in mice was regulated by injecting either specific antibodies or rIL-21, and the immune response was evaluated by flow cytometry. Our results suggested that IL-21 enhances immune protection by inducing a T follicular helper cell and germinal center B cell response. We used RNA-seq to explore molecular mechanisms and identified 10 upregulated and 32 downregulated genes involved in IL-21-upregulated protection. Gene Ontology analysis and pathway analysis of the differentially expressed genes were also performed. Our findings indicate that IL-21 can enhance the immune protection effect of the VvhA protein and may serve as a novel strategy for enhancing the immune protection effect of protein vaccines.


Asunto(s)
Interleucinas , Vibriosis , Vibrio vulnificus , Animales , Proteínas Bacterianas/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interleucinas/metabolismo , Ratones , Vibriosis/prevención & control , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
16.
J Microbiol ; 60(2): 224-233, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35102528

RESUMEN

Opportunistic pathogen Vibrio vulnificus causes severe systemic infection in humans with high mortality. Although multiple exotoxins have been characterized in V. vulnificus, their interactions and potential synergistic roles in pathogen-induced host cell death have not been investigated previously. By employing a series of multiple exotoxin deletion mutants, we investigated whether specific exotoxins of the pathogen functioned together to achieve severe and rapid necrotic cell death. Human epithelial cells treated with V. vulnificus with a plpA deletion background exhibited an unusually prolonged cell blebbing, suggesting the importance of PlpA, a phospholipase A2, in rapid necrotic cell death by this pathogen. Additional deletion of the rtxA gene encoding the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin did not result in necrotic cell blebs. However, if the rtxA gene was engineered to produce an effector-free MARTX toxin, the cell blebbing was observed, indicating that the pore forming activity of the MARTX toxin is sufficient, but the MARTX toxin effector domains are not necessary, for the blebbing. When a recombinant PlpA was treated on the blebbed cells, the blebs were completely disrupted. Consistent with this, MARTX toxin-pendent rapid release of cytosolic lactate dehydrogenase was significantly delayed in the plpA deletion background. Mutations in other exotoxins such as elastase, cytolysin/hemolysin, and/or extracellular metalloprotease did not affect the bleb formation or disruption. Together, these findings indicate that the pore forming MARTX toxin and the phospholipase A2, PlpA, cooperate sequentially to achieve rapid necrotic cell death by inducing cell blebbing and disrupting the blebs, respectively.


Asunto(s)
Toxinas Bacterianas/genética , Exotoxinas/genética , Fosfolipasas A2/genética , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Células 3T3-L1 , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Muerte Celular , Exotoxinas/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Ratones , Fosfolipasas A2/metabolismo , Eliminación de Secuencia , Vibriosis/microbiología , Vibrio vulnificus/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
J Microbiol ; 60(4): 375-386, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35157220

RESUMEN

Vibrio vulnificus MO6-24/O has three genes annotated as debranching enzymes or pullulanase genes. Among them, the gene encoded by VVMO6_03032 (vvde1) shares a higher similarity at the amino acid sequence level to the glycogen debranching enzymes, AmyX of Bacillus subtilis (40.5%) and GlgX of Escherichia coli (55.5%), than those encoded by the other two genes. The vvde1 gene encoded a protein with a molecular mass of 75.56 kDa and purified Vvde1 efficiently hydrolyzed glycogen and pullulan to shorter chains of maltodextrin and maltotriose (G3), respectively. However, it hydrolyzed amylopectin and soluble starch far less efficiently, and ß-cyclodextrin (ß-CD) only rarely. The optimal pH and temperature of Vvde1 was 6.5 and 25°C, respectively. Vvde1 was a cold-adapted debranching enzyme with more than 60% residual activity at 5°C. It could maintain stability for 2 days at 25°C and 1 day at 35°C, but it destabilized drastically at 40°C. The Vvde1 activity was inhibited considerably by Cu2+, Hg2+, and Zn2+, while it was slightly enhanced by Co2+, Ca2+, Ni2+, and Fe2+. The vvde1 knock-out mutant accumulated more glycogen than the wild-type in media supplemented with 1.0% maltodextrin; however, the side chain length distribution of glycogen was similar to that of the wild-type except G3, which was much more abundant in the mutant. Therefore, Vvde1 seemed to debranch glycogen with the degree of polymerization 3 (DP3) as the specific target branch length. Virulence of the pathogen against Caenorhabditis elegans was attenuated significantly by the vvde1 mutation. These results suggest that Vvde1 might be a unique glycogen debranching enzyme that is involved in both glycogen utilization and shaping of glycogen molecules, and contributes toward virulence of the pathogen.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno , Vibrio vulnificus , Amilopectina/metabolismo , Glucógeno/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/química , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Vibrio vulnificus/metabolismo , Virulencia/genética
18.
Sci Rep ; 12(1): 831, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039556

RESUMEN

Roles for the non-coding small RNA RyhB in quorum-sensing and iron-dependent gene modulation in the human pathogen V. vulnificus were assessed in this study. Both the quorum sensing master regulator SmcR and the Fur-iron complex were observed to bind to the region upstream of the non-coding small RNA RyhB gene to repress expression, which suggests that RyhB is associated with both quorum-sensing and iron-dependent signaling in this pathogen. We found that expression of LuxS, which is responsible for the biosynthesis of autoinducer-2 (AI-2), was higher in wild type than in a ryhB-deletion isotype. RyhB binds directly to the 5'-UTR (untranslated region) of the luxS transcript to form a heteroduplex, which not only stabilizes luxS mRNA but also disrupts the secondary structure that normally obscures the translational start codon and thereby allows translation of LuxS to begin. The binding of RyhB to luxS mRNA requires the chaperone protein Hfq, which stabilizes RyhB. These results demonstrate that the small RNA RyhB is a key element associated with feedback control of AI-2 production, and that it inhibits quorum-sensing signaling in an iron-dependent manner. This study, taken together with previous studies, shows that iron availability and cell density signals are funneled to SmcR and RyhB, and that these regulators coordinate cognate signal pathways that result in the proper balance of protein expression in response to environmental conditions.


Asunto(s)
Genes Bacterianos/genética , Homoserina/análogos & derivados , Hierro/metabolismo , Lactonas/metabolismo , Percepción de Quorum/fisiología , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , Vibrio vulnificus/genética , Vibrio vulnificus/fisiología , Regiones no Traducidas 5' , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Liasas de Carbono-Azufre/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Homoserina/biosíntesis , Homoserina/metabolismo , ARN Mensajero , Transducción de Señal/genética , Transducción de Señal/fisiología , Vibrio vulnificus/metabolismo
19.
Mar Drugs ; 19(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34940709

RESUMEN

Vibrio vulnificus is a Gram-negative pathogenic bacterium that causes serious infections in humans and requires iron for growth. A clinical isolate, V. vulnificus M2799, secretes a catecholate siderophore, vulnibactin, that captures ferric ions from the environment. In the ferric-utilization system in V. vulnificus M2799, an isochorismate synthase (ICS) and an outer membrane receptor, VuuA, are required under low-iron conditions, but alternative proteins FatB and VuuB can function as a periplasmic-binding protein and a ferric-chelate reductase, respectively. The vulnibactin-export system is assembled from TolCV1 and several RND proteins, including VV1_1681. In heme acquisition, HupA and HvtA serve as specific outer membrane receptors and HupB is a sole periplasmic-binding protein, unlike FatB in the ferric-vulnibactin utilization system. We propose that ferric-siderophore periplasmic-binding proteins and ferric-chelate reductases are potential targets for drug discovery in infectious diseases.


Asunto(s)
Hierro/metabolismo , Vibrio vulnificus/metabolismo , Animales , Organismos Acuáticos , Iones , Proteínas de Unión Periplasmáticas/metabolismo , Vibrio vulnificus/genética
20.
Biol Pharm Bull ; 44(11): 1790-1795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719655

RESUMEN

Vibrio vulnificus can utilize the xenosiderophore desferrioxamine B (DFOB) as an iron source under iron-restricted conditions. We previously identified in V. vulnificus that transcription of the desA gene encoding the outer membrane receptor for ferrioxamine B (FOXB) is activated by the AraC-type transcriptional regulator encoded by desR together with DFOB. In this study, we overexpressed and purified DesR as a glutathione S-transferase-fused protein and examined interaction between the promoter region of desA and DesR. Electrophoretic mobility shift assay (EMSA) revealed that DesR directly binds to the regulatory region of desA, and this binding was enhanced by the presence of DFOB in a concentration-dependent manner, while the presence of FOXB did not affect the potentiation of their binding. Moreover, EMSA identified that DNA fragments lacking a probable DesR binding sequence were unable to form complexes with DesR. Finally, deoxyribonuclease I footprinting assay demonstrated that the DNA binding sequence of DesR is located between -27 and -50 nucleotides upstream of the desA transcription start site. These results strongly indicate that DesR can directly activate the transcription of desA in cooperation with DFOB, which acts as a coactivator for DesR.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Genes Bacterianos/genética , Receptores de Superficie Celular/genética , Factores de Transcripción/metabolismo , Vibrio vulnificus/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Regiones Promotoras Genéticas , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA