Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 95
1.
Int J Biol Macromol ; 221: 1365-1372, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36126806

Volatile fatty acids (VFAs) derived from biomass are considered to be economical and environmentally friendly feedstocks for microbial fermentation. Converting VFAs to polyhydroxyalkanoate (PHA) could reduce the substrate cost and provide an economically viable route for the commercialization of PHA. The halophilic bacteria Salinivibrio spp. TGB4 and TGB19, newly isolated from salt fields, were found to accumulate poly-3-hydroxybutyrate (PHB) using acetate or butyrate as the substrate. Both strains exhibited considerable cell growth (OD600 of ~8) even at acetate concentration of 100 g/L. In shake flask cultures, TGB4 produced PHB titers of 0.90 and 1.34 g/L, while TGB19 produced PHB titers of 0.25 and 2.53 g/L with acetate and butyrate, respectively. When acetate and butyrate were both applied, PHB production was significantly increased, and the PHB titer of TGB4 and TGB19 reached 6.14 and 6.84 g/L, respectively. After optimizing the culture medium, TGB19 produced 8.42 g/L PHB, corresponding to 88.55 wt% of cell dry weight. During fed-batch cultivation, TGB19 produced a PHB titer of 53.23 g/L. This is the highest reported PHB titer using acetate and butyrate by pure microbial cultures and would provide promising hosts for the industrial production of PHA from VFAs.


Polyhydroxyalkanoates , Vibrionaceae , Butyrates , Hydroxybutyrates , Polyesters/metabolism , Fatty Acids, Volatile , Acetates , Vibrionaceae/metabolism , Fermentation
2.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article En | MEDLINE | ID: mdl-36012135

Piscibactin is a widespread siderophore system present in many different bacteria, especially within the Vibrionaceae family. Previous works showed that most functions required for biosynthesis and transport of this siderophore are encoded by the high-pathogenicity island irp-HPI. In the present work, using Vibrio anguillarum as a model, we could identify additional key functions encoded by irp-HPI that are necessary for piscibactin production and transport and that have remained unknown. Allelic exchange mutagenesis, combined with cross-feeding bioassays and LC-MS analysis, were used to demonstrate that Irp4 protein is an essential component for piscibactin synthesis since it is the thioesterase required for nascent piscibactin be released from the NRPS Irp1. We also show that Irp8 is a MFS-type protein essential for piscibactin secretion. In addition, after passage through the outer membrane transporter FrpA, the completion of ferri-piscibactin internalization through the inner membrane would be achieved by the ABC-type transporter FrpBC. The expression of this transporter is coordinated with the expression of FrpA and with the genes encoding biosynthetic functions. Since piscibactin is a major virulence factor of some pathogenic vibrios, the elements of biosynthesis and transport described here could be additional interesting targets for the design of novel antimicrobials against these bacterial pathogens.


Vibrio , Vibrionaceae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genomic Islands , Siderophores/metabolism , Vibrio/genetics , Vibrio/metabolism , Vibrionaceae/genetics , Vibrionaceae/metabolism , Virulence Factors/metabolism
3.
J Mol Biol ; 433(24): 167321, 2021 12 03.
Article En | MEDLINE | ID: mdl-34687715

Obligate symbionts typically exhibit high evolutionary rates. Consequently, their proteins may differ considerably from their modern and ancestral homologs in terms of both sequence and properties, thus providing excellent models to study protein evolution. Also, obligate symbionts are challenging to culture in the lab and proteins from uncultured organisms must be produced in heterologous hosts using recombinant DNA technology. Obligate symbionts thus replicate a fundamental scenario of metagenomics studies aimed at the functional characterization and biotechnological exploitation of proteins from the bacteria in soil. Here, we use the thioredoxin from Candidatus Photodesmus katoptron, an uncultured symbiont of flashlight fish, to explore evolutionary and engineering aspects of protein folding in heterologous hosts. The symbiont protein is a standard thioredoxin in terms of 3D-structure, stability and redox activity. However, its folding outside the original host is severely impaired, as shown by a very slow refolding in vitro and an inefficient expression in E. coli that leads mostly to insoluble protein. By contrast, resurrected Precambrian thioredoxins express efficiently in E. coli, plausibly reflecting an ancient adaptation to unassisted folding. We have used a statistical-mechanical model of the folding landscape to guide back-to-ancestor engineering of the symbiont protein. Remarkably, we find that the efficiency of heterologous expression correlates with the in vitro (i.e., unassisted) folding rate and that the ancestral expression efficiency can be achieved with only 1-2 back-to-ancestor replacements. These results demonstrate a minimal-perturbation, sequence-engineering approach to rescue inefficient heterologous expression which may potentially be useful in metagenomics efforts targeting recent adaptations.


Bacterial Proteins/biosynthesis , Fishes/microbiology , Protein Folding , Recombinant Proteins/biosynthesis , Vibrionaceae/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/metabolism , Metagenomics , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Symbiosis , Thioredoxins/biosynthesis , Thioredoxins/chemistry , Vibrionaceae/genetics
4.
Mar Biotechnol (NY) ; 22(5): 651-660, 2020 Oct.
Article En | MEDLINE | ID: mdl-32827070

Salinivibrio proteolyticus M318, a halophilic bacterium isolated from fermented shrimp paste, is able to produce polyhydroxyalkanoate (PHA) from different carbon sources. In this study, we report the whole-genome sequence of strain M138, which comprises 2 separated chromosomes and 2 plasmids, and the complete genome contains 3,605,935 bp with an average GC content of 49.9%. The genome of strain M318 contains 3341 genes, 98 tRNA genes, and 28 rRNA genes. The 16S rRNA gene sequence and average nucleotide identity analysis associated with morphological and biochemical tests showed that this strain has high homology to the reference strain Salinivibrio proteolyticus DSM 8285. The genes encoding key enzymes for PHA and ectoine synthesis were identified from the bacterial genome. In addition, the TeaABC transporter responsible for ectoine uptake from the environment and the operon doeABXCD responsible for the degradation of ectoine were also detected. Strain M318 was able to produce poly(3-hydroxybutyrate) [P(3HB)] from different carbon sources such as glycerol, maltose, glucose, fructose, and starch. The ability to produce ectoines at different NaCl concentrations was investigated. High ectoine content of 26.2% of cell dry weight was obtained by this strain at 18% NaCl. This report provides genetic information regarding adaptive mechanisms of strain M318 to stress conditions, as well as new knowledge to facilitate the application of this strain as a bacterial cell factory for the production of PHA and ectoine.


Amino Acids, Diamino/biosynthesis , Polyhydroxyalkanoates/biosynthesis , Vibrionaceae/metabolism , Biosynthetic Pathways/genetics , Fermented Foods/microbiology , Food Microbiology , Genome, Bacterial/genetics , Plasmids , Salinity , Vibrionaceae/enzymology , Vibrionaceae/genetics
5.
Biotechnol Lett ; 42(6): 1003-1017, 2020 Jun.
Article En | MEDLINE | ID: mdl-32062816

PURPOSE: Numerous applications of compatible salts (osmolytes) as ectoine in food and pharmaceutical industries have been intensively increased nowadays. Decreasing the cost of industrial production of ectoine using low-cost cultivation media and improving the yield through modeling procedures are the main scopes of the present study. METHODS: Three statistical design experiments have been successfully applied for screening the parameters affecting the production process, studying the relations among parameters and optimizing the production using response surface methodology. RESULTS: A novel semi-synthetic medium based on hydrolyzed corn gluten meal has been developed to cultivate moderate halophilic bacterial strains; Vibrio sp. CS1 and Salinivibrio costicola SH3, and support ectoine synthesis under salinity stress. Two regression equations describe the production process in the new medium have been formulated for each bacterial strain. Response surface optimizer of the central composite model predicts the maximum ectoine production is achieved at incubation time; 63.7 h, pH; 7.47 and salinity; 7.27% for Vibrio sp. CS1 whereas these variables should be adjusted at 56.95 h, 7.089 and 10.34%; on the same order regarding Salinivibrio costicola SH3. In application studies, 50 µg ectoine decreases RBCs hemolysis due to streptolysin O toxin by 21.7% within ten minutes. In addition, 2% ectoine succeeds to increase the viability of lactic acid bacteria in Yogurt as a classic example of functional food during the storage period (7 days). CONCLUSION: The present study emphasizes on modeling the process of ectoine production by halophilic bacteria as well as its activity as a cryoprotectant agent.


Amino Acids, Diamino , Osmolar Concentration , Amino Acids, Diamino/biosynthesis , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/pharmacology , Culture Media/chemistry , Culture Media/metabolism , Hydrogen-Ion Concentration , Lactobacillales/drug effects , Models, Statistical , Salinity , Vibrio/metabolism , Vibrionaceae/metabolism , Yogurt/microbiology
6.
Curr Microbiol ; 77(1): 129-135, 2020 Jan.
Article En | MEDLINE | ID: mdl-31691022

Salinivibrio proteolyticus strain YCSC6 was isolated from a saturated saltpan and demonstrated to have strong insecticidal activity against turbot's pathogenic ciliate-Uronema marinum. In this study, we sequenced its complete genome. Results showed that it consists of two circular chromosomes: 2.49 Mbps and 0.74 Mbps, respectively. It encodes 3429 protein-coding sequences. Biosynthetic gene clusters predicted to synthesize bacteriocins and antimicrobial peptides were discovered, which might be the key factors to lyse and kill U. marinum. The complete genome sequence of strain YCSC6 provides insights into the fundamental genetic potential for elucidating its insecticidal mechanism against U. marinum.


Anti-Bacterial Agents/pharmacology , Ciliophora/drug effects , Genome, Bacterial/genetics , Vibrionaceae/metabolism , Anti-Bacterial Agents/metabolism , Bacteriocins/metabolism , Bacteriocins/pharmacology , DNA, Circular , Vibrionaceae/genetics , Whole Genome Sequencing
7.
Int J Biol Macromol ; 141: 885-892, 2019 Dec 01.
Article En | MEDLINE | ID: mdl-31513855

A moderately halophilic bacterium isolated from fermenting shrimp paste, Salinivibrio sp. M318 was found capable of using fish sauce and mixtures of waste fish oil and glycerol as nitrogen and carbon sources, respectively, for poly(3-hydroxybutyrate) (PHB) production. A cell dry weight (CDW) of up to 10 g/L and PHB content of 51.7 wt% were obtained after 48 h of cultivation in flask experiment. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] was synthesized when 1,4-butanediol, γ-butyrolactone, or sodium 4-hydroxybutyrate was added as precursors to the culture medium. The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was achieved by supplying precursors such as sodium valerate, sodium propionate, and sodium heptanoate. Salinivibrio sp. M318 was able to accumulate the above mentioned PHAs during the growth phase. High CDW of 69.1 g/L and PHB content of 51.5 wt% were obtained by strain Salinivibrio sp. M318 after 78 h of cultivation in fed-batch culture. The results demonstrate Salinivibrio sp. M318 to be a promising wild-type bacterium for the production of PHA from aquaculture residues.


Biotransformation , Carbon/chemistry , Fish Oils/chemistry , Glycerol/chemistry , Polyhydroxyalkanoates/biosynthesis , Vibrionaceae/metabolism , Waste Disposal, Fluid , Fatty Acids/analysis , Fermentation , Molecular Structure , Nitrogen/chemistry , Polyhydroxyalkanoates/analysis
8.
Sci Rep ; 9(1): 9833, 2019 07 08.
Article En | MEDLINE | ID: mdl-31285470

Oligomerization of protein into specific quaternary structures plays important biological functions, including regulation of gene expression, enzymes activity, and cell-cell interactions. Here, we report the determination of two crystal structures of the Grimontia hollisae (formally described as Vibrio hollisae) thermostable direct hemolysin (Gh-TDH), a pore-forming toxin. The toxin crystalized in the same space group of P21212, but with two different crystal packing patterns, each revealing three consistent tetrameric oligomerization forms called Oligomer-I, -II, and -III. A central pore with comparable depth of ~50 Å but differing in shape and size was observed in all determined toxin tetrameric oligomers. A common motif of a toxin dimer was found in all determined structures, suggesting a plausible minimum functional unit within the tetrameric structure in cell membrane binding and possible hemolytic activity. Our results show that bacterial toxins may form a single or highly symmetric oligomerization state when exerting their biological functions. The dynamic nature of multiple symmetric oligomers formed upon release of the toxin may open a niche for bacteria survival in harsh living environments.


Cell Membrane/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Vibrionaceae/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Crystallography, X-Ray , HeLa Cells , Hemolysin Proteins/genetics , Hemolysis , Humans , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Rabbits , Vibrionaceae/chemistry , Vibrionaceae/genetics
9.
J Hazard Mater ; 364: 600-607, 2019 02 15.
Article En | MEDLINE | ID: mdl-30390580

Synthetic monorhamnolipids differ from biologically produced material because they are produced as single congeners, depending on the ß-hydroxyalkanoic acid used during synthesis. Each congener is produced as one of four possible diastereomers resulting from two chiral centers at the carbinols of the lipid tails [(R,R), (R,S), (S,R) and (S,S)]. We compare the biodegradability (CO2 respirometry), acute toxicity (Microtox assay), embryo toxicity (Zebrafish assay), and cytotoxicity (xCELLigence and MTS assays) of synthetic rhamnosyl-ß-hydroxydecanoyl-ß-hydroxydecanoate (Rha-C10-C10) monorhamnolipids against biosynthesized monorhamnolipid mixtures (bio-mRL). All Rha-C10-C10 diastereomers and bio-mRL were inherently biodegradable ranging from 34 to 92% mineralized. The Microtox assay showed all Rha-C10-C10 diastereomers and bio-mRL are slightly toxic according to the US EPA ecotoxicity categories with 5 min EC50 values ranging from 39.6 to 87.5 µM. The zebrafish assay showed that of 22 developmental endpoints tested, only mortality was observed at 120 h post fertilization; all Rha-C10-C10 diastereomers and bio-mRL caused significant mortality at 640 µM, except the Rha-C10-C10 (R,R) which showed no developmental effects. xCELLigence and MTS showed IC50 values ranging from 103.4 to 191.1 µM for human lung cell line H1299 after 72 h exposure. These data provide key information regarding Rha-C10-C10 diastereomers that is pertinent when considering potential applications.


Glycolipids/toxicity , Surface-Active Agents/toxicity , Animals , Biodegradation, Environmental , Cell Line , Embryo, Nonmammalian , Embryonic Development/drug effects , Glycolipids/chemistry , Glycolipids/metabolism , Humans , Luminescent Measurements , Pseudomonas aeruginosa/metabolism , Stereoisomerism , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Vibrionaceae/drug effects , Vibrionaceae/metabolism , Zebrafish
10.
Mar Drugs ; 16(11)2018 Nov 04.
Article En | MEDLINE | ID: mdl-30400344

Vibrionaceae is a widespread family of aquatic bacteria that includes emerging pathogens and symbionts. Many Vibrionaceae harbor a type VI secretion system (T6SS), which is a secretion apparatus used to deliver toxins, termed effectors, into neighboring cells. T6SSs mediate both antibacterial and anti-eukaryotic activities. Notably, antibacterial effectors are encoded together with a gene that encodes a cognate immunity protein so as to antagonize the toxicity of the effector. The MIX (Marker for type sIX effectors) domain has been previously defined as a marker of T6SS effectors carrying polymorphic C-terminal toxins. Here, we set out to identify the Vibrionaceae MIX-effector repertoire and to analyze the various toxin domains they carry. We used a computational approach to search for the MIX-effectors in the Vibrionaceae genomes, and grouped them into clusters based on the C-terminal toxin domains. We classified MIX-effectors as either antibacterial or anti-eukaryotic, based on the presence or absence of adjacent putative immunity genes, respectively. Antibacterial MIX-effectors carrying pore-forming, phospholipase, nuclease, peptidoglycan hydrolase, and protease activities were found. Furthermore, we uncovered novel virulence MIX-effectors. These are encoded by "professional MIXologist" strains that employ a cocktail of antibacterial and anti-eukaryotic MIX-effectors. Our findings suggest that certain Vibrionaceae adapted their antibacterial T6SS to mediate interactions with eukaryotic hosts or predators.


Anti-Bacterial Agents/toxicity , Aquatic Organisms/metabolism , Bacterial Proteins/toxicity , Eukaryota/physiology , Type VI Secretion Systems/toxicity , Vibrionaceae/metabolism , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology , Host Microbial Interactions/physiology , Protein Domains/genetics , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Vibrionaceae/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Virulence Factors/toxicity
11.
J Biochem ; 163(5): 425-431, 2018 May 01.
Article En | MEDLINE | ID: mdl-29444248

The collagenase produced by a gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently than that produced by a gram-positive bacterium Clostridium histolyticum (Chcol), which is currently the most widely used collagenase in industry [Teramura et al. (Cloning of a novel collagenase gene from the gram-negative bacterium Grimotia (Vibrio) hollisae 1706B and its efficient expression in Brevibacillus choshinensis. J Bacteriol 2011;193:3049-3056)]. Here, we compared the Ghcol and Chcol activities using two synthetic substrates. In the hydrolysis of (7-methoxycoumarin-4-yl)acetyl-L-Lys-L-Pro-L-Leu-Gly-L-Leu-[N3-(2, 4-dinitrophenyl)-L-2, 3-diaminopropioyl]-L-Ala-L-Arg-NH2, Ghcol exhibited 350-fold higher activity than Chcol in the absence of CaCl2 and NaCl. The Ghcol activity markedly decreased with increasing concentrations of buffer, CaCl2 or NaCl, while the Chcol activity did not, suggesting that the Ghcol activity was sensitive to solvent components. In the hydrolysis of N-[3-(2-furyl)acryloyl]-L-Leu-Gly-L-Pro-Ala, Ghcol exhibited 16-fold higher activity than Chcol in the absence of CaCl2 and NaCl, and both enzyme activities did not decrease with increasing concentrations of buffer, CaCl2 or NaCl. pH dependences of activity revealed that the ionizable group responsible for acidic pKe may be Glu for Ghcol and Chcol, while that for alkaline pKe may be His for Ghcol and Tyr for Chcol. These striking differences suggest that the catalytic mechanism of Ghcol might be considerably different from that of clostridial collagenases.


Clostridium/enzymology , Collagenases/metabolism , Peptide Fragments/metabolism , Vibrionaceae/enzymology , Calcium Chloride/chemistry , Clostridium/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Sodium Chloride/chemistry , Temperature , Vibrionaceae/metabolism
12.
Curr Microbiol ; 75(7): 835-841, 2018 Jul.
Article En | MEDLINE | ID: mdl-29464363

A gram-negative, rod-shaped, motile, oxidase- and catalase-positive, non-pigmented marine bacterium, designated strain OS-11M-2T, was isolated from a coral sample collected from the Osakura coastal area in Micronesia. Phylogenetic analysis based on 16S ribosomal RNA (rRNA) gene sequences indicated that strain OS-11M-2T is a member of the family Vibrionaceae, its closest neighbors being Photobacterium damselae subsp. piscicida NCIMB 2058T (94.9%), Photobacterium damselae subsp. damselae CIP 102761T (94.75%), Grimontia marina IMCC5001T (94.5%), Enterovibrio coralii LMG 22228T (94.5%), and Grimontia celer 96-237T (94.5%). The major cellular fatty acids were summed feature 3 (21.4%), summed feature 8 (18.5%), iso-C16:0 (13.8%), and C16:0 (11.9%). The major respiratory quinone of the bacterium was ubiquinone-8 (Q-8) and its major polar lipid phosphatidylethanolamine. Six amino lipids, two phospholipids, and one polar lipid, all unidentified, were detected. The DNA G+C content was 49.7 mol%. The 16S rRNA gene sequence of OS-11M-2T was registered in GenBank under accession number MF359550. On the basis of phenotypic, genotypic, and phylogenetic analyses, strain OS-11M-2T represents a novel genus of the family Vibrionaceae, for which we propose the name Corallibacterium pacifica gen. nov., sp. nov., with the type strain of the type species being OS-11M-2T (= KCCM 43265T). The digital protologue database (DPD) taxon number for strain OS-11M-2T is GA00041.


Anthozoa/microbiology , Vibrionaceae/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Micronesia , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Vibrionaceae/classification , Vibrionaceae/genetics , Vibrionaceae/metabolism
13.
Environ Microbiol Rep ; 9(3): 310-315, 2017 06.
Article En | MEDLINE | ID: mdl-28464532

Microbial symbiotic partners, such as those associated with Scleractinian corals, mediate biochemical transformations that influence host performance and survival. While evidence suggests microbial community composition partly accounts for differences in coral physiology, how these symbionts affect metabolic pathways remains underexplored. We aimed to assess functional implications of variation among coral-associated microbial partners in hospite. To this end, we characterized and compared metabolomic profiles and microbial community composition from nine reef-building coral species. These data demonstrate metabolite profiles and microbial communities are species-specific and are correlated to one another. Using Porites spp. as a case study, we present evidence that the relative abundance of different sub-clades of Symbiodinium and bacterial/archaeal families are linked to positive and negative metabolomic signatures. Our data suggest that while some microbial partners benefit the union, others are more opportunistic with potential detriment to the host. Consequently, coral partner choice likely influences cellular metabolic activities and, therefore, holobiont nutrition.


Alveolata/growth & development , Anthozoa/microbiology , Anthozoa/parasitology , Archaea/growth & development , Gammaproteobacteria/growth & development , Symbiosis/physiology , Vibrionaceae/growth & development , Alveolata/metabolism , Animals , Archaea/classification , Archaea/metabolism , Biodiversity , Coral Reefs , Gammaproteobacteria/metabolism , Metabolome/physiology , Vibrionaceae/metabolism
14.
Curr Microbiol ; 74(1): 34-41, 2017 Jan.
Article En | MEDLINE | ID: mdl-27761618

The present study has been conducted towards isolation of moderately halophilic bacteria capable of transforming caffeine into theobromine. A total of 45 caffeine-degrading moderate halophiles were enriched from hypersaline lakes and examined for the biotransformation of caffeine to theobromine by thin-layer chromatography (TLC) and high-performance liquid chromatography analyses. Strain GL6, giving the highest yield of theobromine, was isolated from the Hoz Soltan Lake, 20 % w/v salinity, central Iran, and identified as Salinivibrio costicola based on morphological and biochemical features as well as its 16S rRNA gene sequence analysis (GeneBank Accession No. KT378066) and DNA-DNA relatedness. The biotransformation of caffeine with strain GL6 leads to the formation of two metabolites, identified as theobromine and paraxanthine, but the yield of paraxanthine was much lower. Further study on the production of theobromine from caffeine under resting cell experiment was carried out subsequently. The optimal yield of theobromine (56 %) was obtained after a 32-h incubation using 5 mM of caffeine and 15 g l-1 (wet weight) of biomass in 0.1 M saline phosphate buffer (pH 7.0 and 10 % w/v NaCl) under agitation 180 rpm at 30 °C. The biotransformed theobromine was purified by preparative TLC and subjected to FTIR and mass spectroscopy for chemical identification. This is the first evidence for biotransformation of caffeine into theobromine by strains of the genus Salinivibrio.


Caffeine/metabolism , Lakes/microbiology , Sodium Chloride/metabolism , Theobromine/metabolism , Vibrionaceae/metabolism , Bacterial Typing Techniques , Biotransformation , DNA, Bacterial/genetics , Lakes/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride/analysis , Vibrionaceae/classification , Vibrionaceae/genetics , Vibrionaceae/isolation & purification
15.
Appl Environ Microbiol ; 82(13): 4035-4044, 2016 07 01.
Article En | MEDLINE | ID: mdl-27129958

UNLABELLED: Many factors, such as the substrate and the growth phase, influence biosynthesis of secondary metabolites in microorganisms. Therefore, it is crucial to consider these factors when establishing a bioprospecting strategy. Mimicking the conditions of the natural environment has been suggested as a means of inducing or influencing microbial secondary metabolite production. The purpose of the present study was to determine how the bioactivity of Vibrionaceae was influenced by carbon sources typical of their natural environment. We determined how mannose and chitin, compared to glucose, influenced the antibacterial activity of a collection of Vibrionaceae strains isolated because of their ability to produce antibacterial compounds but that in subsequent screenings seemed to have lost this ability. The numbers of bioactive isolates were 2- and 3.5-fold higher when strains were grown on mannose and chitin, respectively, than on glucose. As secondary metabolites are typically produced during late growth, potential producers were also allowed 1 to 2 days of growth before exposure to the pathogen. This strategy led to a 3-fold increase in the number of bioactive strains on glucose and an 8-fold increase on both chitin and mannose. We selected two bioactive strains belonging to species for which antibacterial activity had not previously been identified. Using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry and bioassay-guided fractionation, we found that the siderophore fluvibactin was responsible for the antibacterial activity of Vibrio furnissii and Vibrio fluvialis These results suggest a role of chitin in the regulation of secondary metabolism in vibrios and demonstrate that considering bacterial ecophysiology during development of screening strategies will facilitate bioprospecting. IMPORTANCE: A challenge in microbial natural product discovery is the elicitation of the biosynthetic gene clusters that are silent when microorganisms are grown under standard laboratory conditions. We hypothesized that, since the clusters are not lost during proliferation in the natural niche of the microorganisms, they must, under such conditions, be functional. Here, we demonstrate that an ecology-based approach in which the producer organism is allowed a temporal advantage and where growth conditions are mimicking the natural niche remarkably increases the number of Vibrionaceae strains producing antibacterial compounds.


Anti-Infective Agents/metabolism , Biological Products/metabolism , Carbon/metabolism , Secondary Metabolism , Vibrionaceae/metabolism , Chitin/metabolism , Glucose/metabolism , Mannose/metabolism
16.
Mar Drugs ; 12(11): 5527-46, 2014 Nov 20.
Article En | MEDLINE | ID: mdl-25419995

Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria.


Acyl-Butyrolactones/metabolism , Quorum Sensing/physiology , Vibrionaceae/metabolism , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity , Tandem Mass Spectrometry/methods , Vibrionaceae/genetics
17.
Microbiology (Reading) ; 160(Pt 9): 1953-1963, 2014 Sep.
Article En | MEDLINE | ID: mdl-24913685

Heat-shock proteins are molecular chaperones essential for protein folding, degradation and trafficking. The human pathogen Vibrio vulnificus encodes a copy of the groESEL operon in both chromosomes and these genes share <80 % similarity with each other. Comparative genomic analysis was used to determine whether this duplication is prevalent among Vibrionaceae specifically or Gammaproteobacteria in general. Among the Vibrionaceae complete genome sequences in the database (31 species), seven Vibrio species contained a copy of groESEL in each chromosome, including the human pathogens Vibrio cholerae, Vibrio parahaemolyticus and V. vulnificus. Phylogenetic analysis of GroEL among the Gammaproteobacteria indicated that GroESEL-1 encoded in chromosome I was the ancestral copy and GroESEL-2 in chromosome II arose by an ancient gene duplication event. Interestingly, outside of the Vibrionaceae within the Gammaproteobacteria, groESEL chromosomal duplications were rare among the 296 genomes examined; only five additional species contained two or more copies. Examination of the expression pattern of groEL from V. vulnificus cells grown under different conditions revealed differential expression between the copies. The data demonstrate that groEL-1 was more highly expressed during growth in exponential phase than groEL-2 and a similar pattern was also found in both V. cholerae and V. parahaemolyticus. Overall these data suggest that retention of both copies of groESEL in Vibrio species may confer an evolutionary advantage.


Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Chaperonins/biosynthesis , Chaperonins/genetics , Gene Expression , Genetic Variation , Vibrionaceae/genetics , Vibrionaceae/metabolism , Gene Duplication , Operon
18.
J Appl Microbiol ; 115(3): 835-47, 2013 Sep.
Article En | MEDLINE | ID: mdl-23725044

AIMS: The aim of this study was to use a sensitive method to screen and quantify 57 Vibrionaceae strains for the production of acyl-homoserine lactones (AHLs) and map the resulting AHL profiles onto a host phylogeny. METHODS AND RESULTS: We used a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) protocol to measure AHLs in spent media after bacterial growth. First, the presence/absence of AHLs (qualitative analysis) was measured to choose internal standard for subsequent quantitative AHL measurements. We screened 57 strains from three genera (Aliivibrio, Photobacterium and Vibrio) of the same family (i.e. Vibrionaceae). Our results show that about half of the isolates produced multiple AHLs, typically at 25-5000 nmol l(-1) . CONCLUSIONS: This work shows that production of AHL quorum sensing signals is found widespread among Vibrionaceae bacteria and that closely related strains typically produce similar AHL profiles. SIGNIFICANCE AND IMPACT OF THE STUDY: The AHL detection protocol presented in this study can be applied to a broad range of bacterial samples and may contribute to a wider mapping of AHL production in bacteria, for example, in clinically relevant strains.


Acyl-Butyrolactones/analysis , Vibrionaceae/metabolism , Acyl-Butyrolactones/metabolism , Aliivibrio fischeri/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry , Photobacterium/chemistry , Quorum Sensing , Tandem Mass Spectrometry , Vibrio/chemistry , Vibrionaceae/chemistry , Vibrionaceae/classification
19.
Proc Natl Acad Sci U S A ; 109(49): 20059-64, 2012 Dec 04.
Article En | MEDLINE | ID: mdl-23169633

A common strategy among microbes living in iron-limited environments is the secretion of siderophores, which can bind poorly soluble iron and make it available to cells via active transport mechanisms. Such siderophore-iron complexes can be thought of as public goods that can be exploited by local communities and drive diversification, for example by the evolution of "cheating." However, it is unclear whether bacterial populations in the environment form stable enough communities such that social interactions significantly impact evolutionary dynamics. Here we show that public good games drive the evolution of iron acquisition strategies in wild populations of marine bacteria. We found that within nonclonal but ecologically cohesive genotypic clusters of closely related Vibrionaceae, only an intermediate percentage of genotypes are able to produce siderophores. Nonproducers within these clusters exhibited selective loss of siderophore biosynthetic pathways, whereas siderophore transport mechanisms were retained, suggesting that these nonproducers can act as cheaters that benefit from siderophore producers in their local environment. In support of this hypothesis, these nonproducers in iron-limited media suffer a significant decrease in growth, which can be alleviated by siderophores, presumably owing to the retention of transport mechanisms. Moreover, using ecological data of resource partitioning, we found that cheating coevolves with the ecological specialization toward association with larger particles in the water column, suggesting that these can harbor stable enough communities for dependencies among organisms to evolve.


Biological Evolution , Iron/metabolism , Microbial Interactions/physiology , Plankton/metabolism , Seawater/microbiology , Vibrionaceae/metabolism , Atlantic Ocean , Computational Biology , Massachusetts , Models, Biological , Plankton/microbiology , Siderophores/biosynthesis , Siderophores/metabolism
20.
Mar Drugs ; 9(9): 1440-1468, 2011.
Article En | MEDLINE | ID: mdl-22131950

Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.


Vibrionaceae/metabolism , Anti-Bacterial Agents/biosynthesis , Ecology , Genetic Variation , Phylogeny , Quorum Sensing , Siderophores/biosynthesis , Vibrionaceae/classification , Vibrionaceae/genetics
...