Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Nat Commun ; 15(1): 3875, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719800

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Cytokinins , Indoleacetic Acids , Phylogeny , Plant Growth Regulators , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Viridiplantae/metabolism , Viridiplantae/genetics , Ethylenes/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Cyclopentanes/metabolism , Biological Evolution , Chlorophyta/metabolism , Chlorophyta/genetics , Signal Transduction
2.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38474088

Members of the phloem protein 16 (PP16) gene family are induced by elicitors in rice and the corresponding proteins from cucurbits, which display RNA binding and intercellular transport activities, are accumulated in phloem sap. These proteins facilitate the movement of protein complexes through the phloem translocation flow and may be involved in the response to water deficit, among other functions. However, there is scant information regarding their function in other plants, including the identification of paralog genes in non-vascular plants and chlorophytes. In the present work, an evolutionary and structural analysis of the PP16 family in green plants (Viridiplantae) was carried out. Data mining in different databases indicated that PP16 likely originated from a larger gene present in an ancestral lineage that gave rise to chlorophytes and multicellular plants. This gene encodes a protein related to synaptotagmin, which is involved in vesicular transport in animal systems, although other members of this family play a role in lipid turnover in endomembranes and organelles. These proteins contain a membrane-binding C2 domain shared with PP16 proteins in vascular plants. In silico analysis of the predicted structure of the PP16 protein family identified several ß-sheets, one α-helix, and intrinsically disordered regions. PP16 may have been originally involved in vesicular trafficking and/or membrane maintenance but specialized in long-distance signaling during the emergence of the plant vascular system.


Plant Proteins , Viridiplantae , Plant Proteins/genetics , Phloem/metabolism , Plants/metabolism , Biological Transport , Viridiplantae/metabolism
3.
Plant Physiol Biochem ; 202: 107922, 2023 Sep.
Article En | MEDLINE | ID: mdl-37573794

Calmodulin (CaM) and calmodulin-like (CML) proteins are crucial Ca2+ sensors, which are widely involved in different biological processes of plants, including their growth and development, and stress responses. However, the origin and evolution of the CaM/CML gene family in plants remain elusive. In this study, 2133 CaM and 23094 CML genes were identified from the 1000 plants project (1 KP) species and the sequenced plants, covering algae, mosses, monilophytes, lycophytes, flowering plants, and all other green plant branches. Analysis showed that the size of the CML subfamily was correlated with the genome size of corresponding plant species, as well as the total gene number in the genome. Moreover, with the evolution from algae to angiosperms, the number of CML genes in plants increased gradually which could have been driven mainly by genome-wide segmental duplication events, while the number of CaMs remained basically stable at 2-3. Phylogenetic analysis demonstrated that CaM first appeared in green algae, while CML appeared earlier and has already been presented in dinoflagellates. Further analysis showed that the number and sequence of EF-hand domain in CaMs are highly conserved, while those of CMLs are diverse among different plant taxa. Expression analysis revealed that the expression level of CaMs was generally higher than that of CMLs, indicating that the high-expression genes have essential functions, while the low-expression genes are the main reasons for the functional diversity of the CaM/CML gene family in plants. The results might contribute to understanding the evolution of CaM/CML genes as well as their molecular functions.


Arabidopsis , Viridiplantae , Calmodulin/metabolism , Phylogeny , Plants/genetics , Plants/metabolism , Arabidopsis/genetics , Viridiplantae/genetics , Viridiplantae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular
5.
J Exp Bot ; 74(2): 520-542, 2023 01 11.
Article En | MEDLINE | ID: mdl-36055563

Nature's vital, but notoriously inefficient, CO2-fixing enzyme Rubisco often limits the growth of photosynthetic organisms including crop species. Form I Rubiscos comprise eight catalytic large subunits and eight auxiliary small subunits and can be classified into two distinct lineages-'red' and 'green'. While red-type Rubiscos (Form IC and ID) are found in rhodophytes, their secondary symbionts, and certain proteobacteria, green-type Rubiscos (Form IA and IB) exist in terrestrial plants, chlorophytes, cyanobacteria, and other proteobacteria. Eukaryotic red-type Rubiscos exhibit desirable kinetic properties, namely high specificity and high catalytic efficiency, with certain isoforms outperforming green-type Rubiscos. However, it is not yet possible to functionally express a high-performing red-type Rubisco in chloroplasts to boost photosynthetic carbon assimilation in green plants. Understanding the molecular and evolutionary basis for divergence between red- and green-type Rubiscos could help us to harness the superior CO2-fixing power of red-type Rubiscos. Here we review our current understanding about red-type Rubisco distribution, biogenesis, and sequence-structure, and present opportunities and challenges for utilizing red-type Rubisco kinetics towards crop improvements.


Ribulose-Bisphosphate Carboxylase , Viridiplantae , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , Chloroplasts/metabolism , Photosynthesis , Viridiplantae/metabolism , Kinetics
6.
J Exp Bot ; 73(13): 4323-4337, 2022 07 16.
Article En | MEDLINE | ID: mdl-35605260

The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.


Chlorophyta , Viridiplantae , Biology , Chlorophyta/genetics , Evolution, Molecular , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Viridiplantae/genetics , Viridiplantae/metabolism
7.
New Phytol ; 233(5): 2000-2016, 2022 03.
Article En | MEDLINE | ID: mdl-34729790

Chloroplasts are best known for their role in photosynthesis, but they also allow nitrogen and sulphur assimilation, amino acid, fatty acid, nucleotide and hormone synthesis. How chloroplasts develop is therefore relevant to these diverse and fundamental biological processes, but also to attempts at their rational redesign. Light is strictly required for chloroplast formation in all angiosperms and directly regulates the expression of hundreds of chloroplast-related genes. Light also modulates the levels of several hormones including brassinosteriods, cytokinins, auxins and gibberellins, which themselves control chloroplast development particularly during early stages of plant development. Transcription factors such as GOLDENLIKE1&2 (GLK1&2), GATA NITRATE-INDUCIBLE CARBON METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1) act downstream of both light and phytohormone signalling to regulate chloroplast development. Thus, in green tissues transcription factors, light signalling and hormone signalling form a complex network regulating the transcription of chloroplast- and photosynthesis-related genes to control the development and number of chloroplasts per cell. We use this conceptual framework to identify points of regulation that could be harnessed to modulate chloroplast abundance and increase photosynthetic efficiency of crops, and to highlight future avenues to overcome gaps in current knowledge.


Arabidopsis Proteins , Viridiplantae , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Gene Expression Regulation, Plant , Hormones/metabolism , Light , Photosynthesis/genetics , Plant Leaves/physiology , Viridiplantae/metabolism
8.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article En | MEDLINE | ID: mdl-34884876

Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.


Evolution, Molecular , Genes, Plant , Nitrate Transporters/genetics , Phylogeny , Plants/metabolism , Viridiplantae/metabolism , Genomics , Plant Proteins , Plants/genetics , Viridiplantae/genetics
9.
J Integr Plant Biol ; 63(11): 1888-1905, 2021 Nov.
Article En | MEDLINE | ID: mdl-34403192

To understand and engineer plant metabolism, we need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we generated genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants (https://plantcyc.org). Of these, 104 have not been reported before. We systematically evaluated the quality of the databases, which revealed that our semi-automated validation pipeline dramatically improves the quality. We then compared the metabolic content across the 126 organisms using multiple correspondence analysis and found that Brassicaceae, Poaceae, and Chlorophyta appeared as metabolically distinct groups. To demonstrate the utility of this resource, we used recently published sorghum transcriptomics data to discover previously unreported trends of metabolism underlying drought tolerance. We also used single-cell transcriptomics data from the Arabidopsis root to infer cell type-specific metabolic pathways. This work shows the quality and quantity of our resource and demonstrates its wide-ranging utility in integrating metabolism with other areas of plant biology.


Databases, Factual , Metabolic Networks and Pathways , Plants/metabolism , Viridiplantae/metabolism , Genome, Plant , Plants/genetics
10.
Mol Plant ; 14(5): 838-846, 2021 05 03.
Article En | MEDLINE | ID: mdl-33515767

Phosphorus is an essential nutrient for plants. It is stored as inorganic phosphate (Pi) in the vacuoles of land plants but as inorganic polyphosphate (polyP) in chlorophyte algae. Although it is recognized that the SPX-Major Facilitator Superfamily (MFS) and VPE proteins are responsible for Pi influx and efflux, respectively, across the tonoplast in land plants, the mechanisms that underlie polyP homeostasis and the transition of phosphorus storage forms during the evolution of green plants remain unclear. In this study, we showed that CrPTC1, encoding a protein with both SPX and SLC (permease solute carrier 13) domains for Pi transport, and CrVTC4, encoding a protein with both SPX and vacuolar transporter chaperone (VTC) domains for polyP synthesis, are required for vacuolar polyP accumulation in the chlorophyte Chlamydomonas reinhardtii. Phylogenetic analysis showed that the SPX-SLC, SPX-VTC, and SPX-MFS proteins were present in the common ancestor of green plants (Viridiplantae). The SPX-SLC and SPX-VTC proteins are conserved among species that store phosphorus as vacuolar polyP and absent from genomes of plants that store phosphorus as vacuolar Pi. By contrast, SPX-MFS genes are present in the genomes of streptophytes that store phosphorus as Pi in the vacuoles. These results suggest that loss of SPX-SLC and SPX-VTC genes and functional conservation of SPX-MFS proteins during the evolution of streptophytes accompanied the change from ancestral polyP storage to Pi storage.


Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Plant Proteins/genetics , Vacuoles/metabolism , Homeostasis , Molecular Chaperones/metabolism , Phosphorus , Phylogeny , Plant Proteins/metabolism , Polyphosphates , Viridiplantae/genetics , Viridiplantae/metabolism
11.
J Biosci ; 452020.
Article En | MEDLINE | ID: mdl-32975233

Subcellular localization prediction of the proteome is one of major goals of large-scale genome or proteome sequencing projects to define the gene functions that could be possible with the help of computational modeling techniques. Previously, different methods have been developed for this purpose using multi-label classification system and achieved a high level of accuracy. However, during the validation of our blind dataset of plant vacuole proteins, we observed that they have poor performance with accuracy value range from ~1.3% to 48.5%. The results showed that the previously developed methods are not very accurate for the plant vacuole protein prediction and thus emphasize the need to develop a more accurate and reliable algorithm. In this study, we have developed various compositions as well as PSSM-based models and achieved a high accuracy than previously developed methods. We have shown that our best model achieved ~63% accuracy on blind dataset, which is far better than currently available tools. Furthermore, we have implemented our best models in the form of GUI-based free software called 'VacPred' which is compatible with both Linux and Window platform. This software is freely available for download at www.deepaklab.com/vacpred.


Plant Proteins/genetics , Proteome/genetics , Software , Support Vector Machine , Vacuoles/genetics , Viridiplantae/genetics , Benchmarking , Computational Biology/methods , Databases, Protein , Datasets as Topic , Plant Cells/metabolism , Plant Proteins/classification , Plant Proteins/metabolism , Proteome/classification , Proteome/metabolism , ROC Curve , Vacuoles/metabolism , Viridiplantae/metabolism
12.
Int J Mol Sci ; 20(20)2019 Oct 11.
Article En | MEDLINE | ID: mdl-31614592

As organelles for photosynthesis in green plants, chloroplasts play a vital role in solar energy capture and carbon fixation. The maintenance of normal chloroplast physiological functions is essential for plant growth and development. Low temperature is an adverse environmental stress that affects crop productivity. Low temperature severely affects the growth and development of plants, especially photosynthesis. To date, many studies have reported that chloroplasts are not only just organelles of photosynthesis. Chloroplasts can also perceive chilling stress signals via membranes and photoreceptors, and they maintain their homeostasis and promote photosynthesis by regulating the state of lipid membranes, the abundance of photosynthesis-related proteins, the activity of enzymes, the redox state, and the balance of hormones and by releasing retrograde signals, thus improving plant resistance to low temperatures. This review focused on the potential functions of chloroplasts in fine tuning photosynthesis processes under low-temperature stress by perceiving stress signals, modulating the expression of photosynthesis-related genes, and scavenging excess reactive oxygen species (ROS) in chloroplasts to survive the adverse environment.


Chloroplasts/metabolism , Stress, Physiological , Viridiplantae/growth & development , Carbon Cycle , Cold Temperature , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Photosynthesis , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Viridiplantae/metabolism
14.
PLoS One ; 14(7): e0220083, 2019.
Article En | MEDLINE | ID: mdl-31344093

To tackle urban water issues, the Chinese government has promoted the construction of sponge cities in recent years. Thirty cities have been designated as experimental sites to serve as models for future sponge city construction, as more than 80% of the built-up urban areas in China must reach the standards of sponge cities by 2030. Greening plants play an important role in sponge cities, and water-use efficiency (WUE) is a vital index to determine whether plants could adapt to and grow healthily in environments with water deficits. In this study, WUE of greening plants was quantified by measuring the stable carbon isotope fractionation. Suitable plants for the green spaces in Guyuan sponge city, in northern China, were selected based on their WUE, and the main factors affecting WUE were studied in four habitats within the city. Plant species identity had the greatest effect on WUE, while habitat and plant life form had lower effect, illustrating that WUE is a relatively stable and reliable index for the classification of plant species. We can improve the WUE and ecological function of green spaces in sponge cities by using isotope technology to select suitable plant species with high WUE. To our knowledge, this study is the first to select plant species for sponge city by using this method, providing a quick and scientific method for the selection of greening plants for future sponge cities.


Carbon Isotopes/pharmacokinetics , Viridiplantae/metabolism , Water/metabolism , Carbon Isotopes/chemistry , China , Cities , Ecosystem , Groundwater/analysis , Groundwater/chemistry , Plants/chemistry , Plants/metabolism , Viridiplantae/chemistry , Water/analysis , Water Resources/supply & distribution , Water Supply/standards
15.
J Exp Bot ; 70(13): 3401-3414, 2019 07 05.
Article En | MEDLINE | ID: mdl-31173086

Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin-RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP-Cullin-F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein-protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.


Cyclopentanes/metabolism , F-Box Proteins , Indoleacetic Acids/metabolism , Oxylipins/metabolism , SKP Cullin F-Box Protein Ligases , Viridiplantae/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Genes, Plant , Plant Growth Regulators/metabolism , Protein Processing, Post-Translational , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Signal Transduction , Ubiquitination , Viridiplantae/growth & development
16.
J Exp Bot ; 70(13): 3415-3424, 2019 07 05.
Article En | MEDLINE | ID: mdl-31089685

The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix-loop-helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.


Arabidopsis Proteins , Cyclopentanes/metabolism , DNA-Binding Proteins , Mediator Complex , Oxylipins/metabolism , Plant Immunity , Viridiplantae/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Mediator Complex/genetics , Mediator Complex/metabolism , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Plants, Genetically Modified/metabolism , Signal Transduction , Transcription Factors/genetics , Viridiplantae/growth & development , Viridiplantae/immunology
17.
J Exp Bot ; 70(13): 3379-3389, 2019 07 05.
Article En | MEDLINE | ID: mdl-31120525

The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.


Cyclopentanes/metabolism , Drosera/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Sarraceniaceae/metabolism , Cyclopentanes/immunology , Oxylipins/immunology , Plant Immunity , Secondary Metabolism , Signal Transduction , Viridiplantae/metabolism
18.
J Exp Bot ; 70(13): 3425-3434, 2019 07 05.
Article En | MEDLINE | ID: mdl-31099390

The growth-defense trade-off in plant biology has gained enormous traction in the last two decades, highlighting the importance of understanding how plants deal with two of the greatest challenges for their survival and reproduction. It has been well established that in response to competition signals perceived by informational photoreceptors, shade-intolerant plants typically activate the shade-avoidance syndrome (SAS). In turn, in response to signals of biotic attack, plants activate a suite of defense responses, many of which are directed to minimize the loss of plant tissue to the attacking agent (broadly defined, the defense syndrome, DS). We argue that components of the SAS, including increased elongation, apical dominance, reduced leaf mass per area (LMA), and allocation to roots, are in direct conflict with configurational changes that plants require to maximize defense. We hypothesize that these configurational trade-offs provide a functional explanation for the suppression of components of the DS in response to competition cues. Based on this premise, we discuss recent advances in the understanding of the mechanisms by which informational photoreceptors, by interacting with jasmonic acid (JA) signaling, help the plant to make intelligent allocation and developmental decisions that optimize its configuration in complex biotic contexts.


Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Photoreceptors, Plant/metabolism , Phytochrome/metabolism , Viridiplantae , Plant Development/physiology , Plant Diseases/immunology , Plant Immunity/physiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Signal Transduction , Viridiplantae/growth & development , Viridiplantae/immunology , Viridiplantae/metabolism
19.
Plant Cell Physiol ; 60(5): 1098-1108, 2019 May 01.
Article En | MEDLINE | ID: mdl-30753722

Energy dissipation is crucial for land and shallow-water plants exposed to direct sunlight. Almost all green plants dissipate excess excitation energy to protect the photosystem reaction centers, photosystem II (PSII) and photosystem I (PSI), and continue to grow under strong light. In our previous work, we reported that about half of the photosystem reaction centers form a PSI-PSII megacomplex in Arabidopsis thaliana, and that the excess energy was transferred from PSII to PSI fast. However, the physiological function and structure of the megacomplex remained unclear. Here, we suggest that high-light adaptable sun-plants accumulate the PSI-PSII megacomplex more than shade-plants. In addition, PSI of sun-plants has a deep trap to receive excitation energy, which is low-energy chlorophylls showing fluorescence maxima longer than 730 nm. This deep trap may increase the high-light tolerance of PSI by improving excitation energy dissipation. Electron micrographs suggest that one PSII dimer is directly sandwiched between two PSIs with 2-fold rotational symmetry in the basic form of the PSI-PSII megacomplex in green plants. This structure should enable fast energy transfer from PSII to PSI and allow energy in PSII to be dissipated via the deep trap in PSI.


Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Viridiplantae/metabolism , Energy Transfer/physiology
20.
J Exp Bot ; 70(8): 2297-2312, 2019 04 15.
Article En | MEDLINE | ID: mdl-30773593

Target of rapamycin (TOR) is a conserved eukaryotic phosphatidylinositol 3-kinase-related kinase that regulates growth and metabolism in response to environment in plants and algae. The study of the plant and algal TOR pathway has largely depended on TOR inhibitors first developed for non-photosynthetic eukaryotes. In animals and yeast, fundamental work on the TOR pathway has benefited from the allosteric TOR inhibitor rapamycin and more recently from ATP-competitive TOR inhibitors (asTORis) that circumvent the limitations of rapamycin. The asTORis, developed for medical application, inhibit TOR complex 1 (TORC1) more efficiently than rapamycin and also inhibit rapamycin-resistant TORCs. This review presents knowledge on TOR inhibitors from the mammalian field and underlines important considerations for plant and algal biologists. It discusses the use of rapamycin and asTORis in plants and algae and concludes with guidelines for physiological studies and genetic screens with TOR inhibitors.


TOR Serine-Threonine Kinases/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Mammals/metabolism , Microalgae/metabolism , Pharmacogenetics , Seaweed/metabolism , Sirolimus/metabolism , Viridiplantae/metabolism
...