Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 146(1-3): 279-285, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32405995

RESUMEN

Persistent non-photochemical hole burning at 4.2 K is an efficient experimental tool to unravel position and nature of low-energy excitonic states in pigment-protein complexes. This is demonstrated here for the case of the trimeric chlorophyll (Chl) a/b light-harvesting complexes of Photosystem II (LHC II) of green plants, where previous work (Pieper et al. J Phys Chem B 103:2412, 1999a) reported a highly localized lowest energy state at 680 nm. At that time, this finding appeared to be consistent with the contemporary knowledge about the LHC II structure, which mainly suggested the presence of weakly coupled Chl heterodimers. Currently, however, it is widely accepted that the lowest state is associated with an excitonically coupled trimer of Chl molecules at physiological temperatures. This raises the question, why an excitonically coupled state has not been identified by spectral hole burning. A re-inspection of the hole burning data reveals a remarkable dependence of satellite hole structure on burn fluence, which is indicative of the excitonic coupling of the low-energy states of trimeric LHC II. At low fluence, the satellite hole structure of the lowest/fluorescing ~ 680 nm state is weak with only one shallow satellite hole at 649 nm in the Chl b spectral range. These findings suggest that the lowest energy state at ~ 680 nm is essentially localized on a Chl a molecule, which may belong to a Chl a/b heterodimer. At high fluence, however, the lowest energy hole shifts blue to ~ 677 nm and is accompanied by two satellite holes at ~ 673 and 663 nm, respectively, indicating that this state is excitonically coupled to other Chl a molecules. In conclusion, LHC II seems to possess two different, but very closely spaced lowest energy states at cryogenic temperatures of 4.2 K.


Asunto(s)
Transferencia de Energía , Complejo de Proteína del Fotosistema II/metabolismo , Viridiplantae/fisiología , Clorofila/metabolismo , Temperatura
2.
J Exp Bot ; 70(8): 2239-2259, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30870564

RESUMEN

The target of rapamycin (TOR)-sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) signaling is an ancient regulatory mechanism that originated in eukaryotes to regulate nutrient-dependent growth. Although the TOR-SnRK1 signaling cascade shows highly conserved functions among eukaryotes, studies in the past two decades have identified many important plant-specific innovations in this pathway. Plants also possess SnRK2 and SnRK3 kinases, which originated from the ancient SnRK1-related kinases and have specialized roles in controlling growth, stress responses and nutrient homeostasis in plants. Recently, an integrative picture has started to emerge in which different SnRKs and TOR kinase are highly interconnected to control nutrient and stress responses of plants. Further, these kinases are intimately involved with phytohormone signaling networks that originated at different stages of plant evolution. In this review, we highlight the evolution and divergence of TOR-SnRK signaling components in plants and their communication with each other as well as phytohormone signaling to fine-tune growth and stress responses in plants.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Evolución Biológica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Homeostasis , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Viridiplantae/genética , Viridiplantae/crecimiento & desarrollo , Viridiplantae/fisiología
3.
Proc Natl Acad Sci U S A ; 116(11): 5015-5020, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804180

RESUMEN

Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) metabolism, evolved in streptophyte algae-the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Cloroplastos/metabolismo , Transducción de Señal , Viridiplantae/fisiología , Adenosina Difosfato , Embryophyta/fisiología , Peróxido de Hidrógeno/metabolismo , Transporte Iónico , Movimiento , Óxido Nítrico/metabolismo , Filogenia , Estomas de Plantas/fisiología
4.
PLoS One ; 14(1): e0209920, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625205

RESUMEN

Heterokont algae are significant contributors to marine primary productivity. These algae have a photosynthetic machinery that shares many common features with that of Viridiplantae (green algae and land plants). Here we demonstrate, however, that the photosynthetic machinery of heterokont algae responds to light fundamentally differently than that of Viridiplantae. While exposure to high light leads to electron accumulation within the photosynthetic electron transport chain in Viridiplantae, this is not the case in heterokont algae. We use this insight to manipulate the photosynthetic electron transport chain and demonstrate that heterokont algae can dynamically distribute excitation energy between the two types of photosystems. We suggest that the reported electron transport and excitation distribution features are adaptations to the marine light environment.


Asunto(s)
Transporte de Electrón/fisiología , Fotosíntesis/fisiología , Oxidación-Reducción , Estramenopilos/metabolismo , Estramenopilos/fisiología , Viridiplantae/metabolismo , Viridiplantae/fisiología
5.
New Phytol ; 219(1): 408-421, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29635737

RESUMEN

Plant transition to land required several regulatory adaptations. The mechanisms behind these changes remain unknown. Since the evolution of transcription factors (TFs) families accompanied this transition, we studied the HOMEODOMAIN LEUCINE ZIPPER (HDZ) TF family known to control key developmental and environmental responses. We performed a phylogenetic and bioinformatics analysis of HDZ genes using transcriptomic and genomic datasets from a wide range of Viridiplantae species. We found evidence for the existence of HDZ genes in chlorophytes and early-divergent charophytes identifying several HDZ members belonging to the four known classes (I-IV). Furthermore, we inferred a progressive incorporation of auxiliary motifs. Interestingly, most of the structural features were already present in ancient lineages. Our phylogenetic analysis inferred that the origin of classes I, III, and IV is monophyletic in land plants in respect to charophytes. However, class IIHDZ genes have two conserved lineages in charophytes and mosses that differ in the CPSCE motif. Our results indicate that the HDZ family was already present in green algae. Later, the HDZ family expanded accompanying critical plant traits. Once on land, the HDZ family experienced multiple duplication events that promoted fundamental neo- and subfunctionalizations for terrestrial life.


Asunto(s)
Evolución Molecular , Leucina Zippers/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Viridiplantae/fisiología , Duplicación de Gen , Proteínas de Homeodominio/genética , Familia de Multigenes , Filogenia , Streptophyta/genética , Streptophyta/fisiología , Viridiplantae/genética
6.
Nitric Oxide ; 63: 30-38, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-27658319

RESUMEN

Over the past twenty years, nitric oxide (NO) has emerged as an important player in various plant physiological processes. Although many advances in the understanding of NO functions have been made, the question of how NO is produced in plants is still challenging. It is now generally accepted that the endogenous production of NO is mainly accomplished through the reduction of nitrite via both enzymatic and non-enzymatic mechanisms which remain to be fully characterized. Furthermore, experimental arguments in favour of the existence of plant nitric oxide synthase (NOS)-like enzymes have been reported. However, recent investigations revealed that land plants do not possess animal NOS-like enzymes while few algal species do. Phylogenetic and structural analyses reveals interesting features specific to algal NOS-like proteins.


Asunto(s)
Óxido Nítrico Sintasa/fisiología , Proteínas de Plantas/fisiología , Viridiplantae/fisiología , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/clasificación , Nitritos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/clasificación
7.
Environ Monit Assess ; 187(9): 564, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26255271

RESUMEN

Defining reference conditions is central to identifying environmental effects of anthropogenic activities. Using a watershed approach, we quantified reference conditions for benthic algal communities and their relations to physico-chemical conditions in rivers in the South Nahanni River watershed, NWT, Canada, in 2008 and 2009. We also compared the ability of three descriptors that vary in terms of analytical costs to define algal community structure based on relative abundances of (i) all algal taxa, (ii) only diatom taxa, and (iii) photosynthetic pigments. Ordination analyses showed that variance in algal community structure was strongly related to gradients in environmental variables describing water physico-chemistry, stream habitats, and sub-watershed structure. Water physico-chemistry and local watershed-scale descriptors differed significantly between algal communities from sites in the Selwyn Mountain ecoregion compared to sites in the Nahanni-Hyland ecoregions. Distinct differences in algal community types between ecoregions were apparent irrespective of whether algal community structure was defined using all algal taxa, diatom taxa, or photosynthetic pigments. Two algal community types were highly predictable using environmental variables, a core consideration in the development of Reference Condition Approach (RCA) models. These results suggest that assessments of environmental impacts could be completed using RCA models for each ecoregion. We suggest that use of algal pigments, a high through-put analysis, is a promising alternative compared to more labor-intensive and costly taxonomic approaches for defining algal community structure.


Asunto(s)
Biota , Monitoreo del Ambiente/estadística & datos numéricos , Ríos/química , Ríos/microbiología , Contaminantes Químicos del Agua/análisis , Canadá , Diatomeas/fisiología , Monitoreo del Ambiente/métodos , Metales/análisis , Modelos Biológicos , Pigmentos Biológicos/análisis , Lluvia , Valores de Referencia , Estramenopilos/fisiología , Temperatura , Viridiplantae/fisiología
8.
Trends Plant Sci ; 20(2): 70-1, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25612461

RESUMEN

Patterning of land plant bodies is determined by positioning of cell walls. A crucial event in land plant evolution was the ability to utilize spatial information to direct cell wall deposition. Recent studies of DEK1 in Physcomitrella patens support a role for DEK1 in position dependent cell wall orientation.


Asunto(s)
Calpaína/genética , Evolución Molecular , Proteínas de Plantas/genética , Viridiplantae/fisiología , Bryopsida/citología , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/fisiología , Calpaína/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Viridiplantae/genética , Viridiplantae/crecimiento & desarrollo
9.
Proc Natl Acad Sci U S A ; 111(46): 16442-7, 2014 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-25349406

RESUMEN

The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity.


Asunto(s)
Especiación Genética , Insectos/fisiología , Componentes Aéreos de las Plantas/fisiología , Simbiosis/fisiología , Viridiplantae/fisiología , Animales , Teorema de Bayes , Ecosistema , Conducta Alimentaria , Fósiles , Modelos Biológicos , Método de Montecarlo , Filogenia , Componentes Aéreos de las Plantas/anatomía & histología , Néctar de las Plantas , Viridiplantae/anatomía & histología , Viridiplantae/clasificación
10.
Ann Agric Environ Med ; 21(3): 541-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25292125

RESUMEN

An aerobiological study was conducted to investigate the quantity and quality of pollen in the atmosphere of Lublin in central-eastern Poland. Pollen monitoring was carried out in the period 2001-2012 using a Hirst-type volumetric spore trap. The atmospheric pollen season in Lublin lasted, on average, from the end of January to the beginning of October. The mean air temperature during the study period was found to be higher by 1.1 °C than the mean temperature in the period 1951-2000. 56 types of pollen of plants belonging to 41 families were identified. 28 types represented woody plants and 28 represented herbaceous plants. The study distinguished 5 plant taxa the pollen of which was present most abundantly in the air of Lublin, which altogether accounted for 73.4%: Betula, Urtica, Pinus, Poaceae, and Alnus. The mean annual pollen index was 68 706; the largest amount of pollen was recorded in April and accounted for 33.3% of the annual pollen index. The pollen calendar included 28 allergenic plant taxa. The pollen of woody plants had the highest percentage in the pollen spectrum, on average 58.4%. The parameters of the pollen calendar for Lublin were compared with the calendar for central-eastern Europe with regard to the start of the pollen season of particular taxa. The pollen calendar for Lublin was demonstrated to show greater similarity to the calendar for Münster (Germany) than to the calendar for Bratislava (Slovakia).


Asunto(s)
Monitoreo del Ambiente , Polen , Viridiplantae/fisiología , Atmósfera , Poaceae/fisiología , Polonia , Estaciones del Año , Temperatura , Árboles/fisiología , Urtica dioica/fisiología
11.
Conserv Biol ; 28(6): 1532-49, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25065640

RESUMEN

Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities.


Asunto(s)
Artrópodos/fisiología , Biodiversidad , Especies Introducidas , Viridiplantae/fisiología , Animales , Conservación de los Recursos Naturales , Cadena Alimentaria , Dinámica Poblacional
12.
Glob Chang Biol ; 20(11): 3329-43, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24820033

RESUMEN

An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Viridiplantae/fisiología , Humedales , Lluvia , Temperatura , Estados Unidos
13.
Glob Chang Biol ; 20(11): 3520-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24753127

RESUMEN

Humans are both intentionally (fertilization) and unintentionally (atmospheric nutrient deposition) adding nutrients worldwide. Increasing availability of biologically reactive nitrogen (N) is one of the major drivers of plant species loss. It remains unclear, however, whether plant diversity will be equally reduced by inputs of reactive N coming from either small and frequent N deposition events or large and infrequent N fertilization events. By independently manipulating the rate and frequency of reactive N inputs, our study teases apart these potentially contrasting effects. Plant species richness decreased more quickly at high rates and at low frequency of N addition, which suggests that previous fertilization studies have likely over-estimated the effects of N deposition on plant species loss. N-induced species loss resulted from both acidification and ammonium toxicity. Further study of small and frequent N additions will be necessary to project future rates of plant species loss under increasing aerial N deposition.


Asunto(s)
Biodiversidad , Fertilizantes/análisis , Pradera , Nitrógeno/farmacología , Viridiplantae/fisiología , China , Relación Dosis-Respuesta a Droga , Viridiplantae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...