Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Cell ; 185(2): 311-327.e24, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063073

RESUMEN

The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of ∼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.


Asunto(s)
Visión Ocular , Corteza Visual/citología , Corteza Visual/embriología , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ácido Glutámico/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , RNA-Seq , Transcriptoma/genética , Visión Binocular/genética , Ácido gamma-Aminobutírico/metabolismo
2.
Nat Commun ; 12(1): 862, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558487

RESUMEN

The adult brain lacks sensitivity to changes in the sensory environment found in the juvenile brain. The transplantation of embryonic interneurons has been shown to restore juvenile plasticity to the adult host visual cortex. It is unclear whether transplanted interneurons directly mediate the renewed cortical plasticity or whether these cells act indirectly by modifying the host interneuron circuitry. Here we find that the transplant-induced reorganization of mouse host circuits is specifically mediated by Neuregulin (NRG1)/ErbB4 signaling in host parvalbumin (PV) interneurons. Brief visual deprivation reduces the visual activity of host PV interneurons but has negligible effects on the responses of transplanted PV interneurons. Exogenous NRG1 both prevents the deprivation-induced reduction in the visual responses of host PV interneurons and blocks the transplant-induced reorganization of the host circuit. While deletion of ErbB4 receptors from host PV interneurons blocks cortical plasticity in the transplant recipients, deletion of the receptors from the donor PV interneurons does not. Altogether, our results indicate that transplanted embryonic interneurons reactivate cortical plasticity by rejuvenating the function of host PV interneurons.


Asunto(s)
Trasplante de Células , Interneuronas/fisiología , Interneuronas/trasplante , Plasticidad Neuronal/fisiología , Corteza Visual/embriología , Animales , Diferenciación Celular , Predominio Ocular , Femenino , Masculino , Ratones Endogámicos C57BL , Neurregulina-1/metabolismo , Parvalbúminas/metabolismo , Receptor ErbB-4/metabolismo , Privación Sensorial , Transducción de Señal , Sinapsis/fisiología
3.
Elife ; 82019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31868167

RESUMEN

Dark exposure (DE) followed by light reintroduction (LRx) reactivates robust synaptic plasticity in adult mouse primary visual cortex (V1), which allows subsequent recovery from amblyopia. Previously we showed that perisynaptic proteolysis by MMP9 mediates the enhancement of plasticity by LRx in binocular adult mice (Murase et al., 2017). However, it was unknown if a visual system compromised by amblyopia could engage this pathway. Here we show that LRx to adult amblyopic mice induces perisynaptic MMP2/9 activity and extracellular matrix (ECM) degradation in deprived and non-deprived V1. Indeed, LRx restricted to the amblyopic eye is sufficient to induce robust MMP2/9 activity at thalamo-cortical synapses and ECM degradation in deprived V1. Two-photon live imaging demonstrates that the history of visual experience regulates MMP2/9 activity in V1, and that DE lowers the threshold for the proteinase activation. The homeostatic reduction of the MMP2/9 activation threshold by DE enables visual input from the amblyopic pathway to trigger robust perisynaptic proteolysis.


Asunto(s)
Ambliopía/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteostasis/fisiología , Corteza Visual/metabolismo , Ambliopía/embriología , Ambliopía/patología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Femenino , Luz , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Estimulación Luminosa , Lectinas de Plantas , Proteolisis , Receptores N-Acetilglucosamina , Sinapsis , Visión Binocular/fisiología , Corteza Visual/embriología , Corteza Visual/patología
4.
Proc Natl Acad Sci U S A ; 116(43): 21812-21820, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591211

RESUMEN

The developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure. To elucidate the relationship between synaptic remodeling and functional changes during this experience-dependent process, we used 2-photon microscopy to image synaptic structures of sparsely labeled layer 2/3 neurons in the binocular zone of mouse primary visual cortex. Anatomical changes at presynaptic and postsynaptic sites in mice undergoing monocular visual deprivation (MD) were compared to those in control mice with normal visual experience. We found that postsynaptic spines remodeled quickly in response to MD, with neurons more strongly dominated by the deprived eye losing more spines. These postsynaptic changes parallel changes in visual responses during MD and their recovery after restoration of binocular vision. In control animals with normal visual experience, the formation of presynaptic boutons increased during the critical period and then declined. MD affected bouton formation, but with a delay, blocking it after 3 d. These findings reveal intracortical anatomical changes in cellular layers of the cortex that can account for rapid activity-dependent plasticity.


Asunto(s)
Ambliopía/fisiopatología , Plasticidad Neuronal/fisiología , Corteza Visual/embriología , Vías Visuales/embriología , Animales , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/fisiología , Privación Sensorial/fisiología , Visión Binocular/fisiología , Visión Monocular/fisiología , Corteza Visual/fisiología
5.
PLoS Biol ; 17(7): e3000362, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31269028

RESUMEN

Human visual cortex is organized with striking consistency across individuals. While recent findings demonstrate an unexpected coupling between functional and cytoarchitectonic regions relative to the folding of human visual cortex, a unifying principle linking these anatomical and functional features of the cortex remains elusive. To fill this gap in knowledge, we combined independent and ground truth measurements of cytoarchitectonic regions and genetic tissue characterization within human occipitotemporal cortex. Using a data-driven approach, we examined whether differential gene expression among cytoarchitectonic areas could contribute to the arealization of occipitotemporal cortex into a hierarchy based on transcriptomics. This approach revealed two opposing gene expression gradients: one that contains a series of genes with expression magnitudes that ascend from posterior (e.g., areas human occipital [hOc]1, hOc2, hOc3, etc.) to anterior cytoarchitectonic areas (e.g., areas fusiform gyrus [FG]1-FG4) and another that contains a separate series of genes that show a descending gradient from posterior to anterior areas. Using data from the living human brain, we show that each of these gradients correlates strongly with variations in measures related to either thickness or myelination of cortex, respectively. We further reveal that these genetic gradients emerge along unique trajectories in human development: the ascending gradient is present at 10-12 gestational weeks, while the descending gradient emerges later (19-24 gestational weeks). Interestingly, it is not until early childhood (before 5 years of age) that the two expression gradients achieve their adult-like mean expression values. Additional analyses in nonhuman primates (NHPs) reveal that homologous genes do not generate the same ascending and descending expression gradients as in humans. We discuss these findings relative to previously proposed hierarchies based on functional and cytoarchitectonic features of visual cortex. Altogether, these findings bridge macroscopic features of human cytoarchitectonic areas in visual cortex with microscopic features of cellular organization and genetic expression, which, despite the complexity of this multiscale correspondence, can be described by a sparse subset (approximately 200) of genes. These findings help pinpoint the genes contributing to healthy cortical development and explicate the cortical biology distinguishing humans from other primates, as well as establishing essential groundwork for understanding future work linking genetic mutations with the function and development of the human brain.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Corteza Visual/metabolismo , Adulto , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Niño , Análisis por Conglomerados , Evolución Molecular , Femenino , Humanos , Macaca , Masculino , Corteza Visual/embriología , Corteza Visual/crecimiento & desarrollo
6.
Annu Rev Vis Sci ; 4: 263-285, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29856937

RESUMEN

The thalamocortical pathway is the main route of communication between the eye and the cerebral cortex. During embryonic development, thalamocortical afferents travel to L4 and are sorted by receptive field position, eye of origin, and contrast polarity (i.e., preference for light or dark stimuli). In primates and carnivores, this sorting involves numerous afferents, most of which sample a limited region of the binocular field. Devoting abundant thalamocortical resources to process a limited visual field has a clear advantage: It allows many stimulus combinations to be sampled at each spatial location. Moreover, the sampling efficiency can be further enhanced by organizing the afferents in a cortical grid for eye input and contrast polarity. We argue that thalamocortical interactions within this eye-polarity grid can be used to represent multiple stimulus combinations found in nature and to build an accurate cortical map for multidimensional stimulus space.


Asunto(s)
Vías Nerviosas/fisiología , Neuronas Retinianas/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Mapeo Encefálico , Ojo/embriología , Humanos , Vías Nerviosas/embriología , Neuronas Aferentes/fisiología , Tálamo/embriología , Corteza Visual/embriología , Campos Visuales/fisiología , Vías Visuales/fisiología
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1300-1311, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28408340

RESUMEN

Nogo-A is a potent myelin-associated inhibitor for neuronal growth and plasticity in the central nervous system (CNS). Its effects are mediated by the activation of specific receptors that intracellularly control cytoskeleton rearrangements, protein synthesis and gene expression. Moreover, Nogo-A has been involved in the development of the visual system and in a variety of neurodegenerative diseases and injury processes that can alter its function. For example, Nogo-A was shown to influence optic nerve myelinogenesis, the formation and maturation of retinal axon projections, and retinal angiogenesis. In adult animals, the inactivation of Nogo-A exerted remarkable effects on visual plasticity. Relieving Nogo-A-induced inhibition increased axonal sprouting after optic nerve lesion and axonal rewiring in the visual cortex of intact adult mice. This review aims at presenting our current knowledge on the role of Nogo-A in the visual system and to discuss how its therapeutic targeting may promote visual improvement in ophthalmic diseases.


Asunto(s)
Axones/metabolismo , Proteínas Nogo/metabolismo , Enfermedades del Nervio Óptico/metabolismo , Corteza Visual/metabolismo , Animales , Axones/patología , Humanos , Ratones , Enfermedades del Nervio Óptico/embriología , Enfermedades del Nervio Óptico/patología , Corteza Visual/embriología , Corteza Visual/patología
8.
Nat Commun ; 7: 13208, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27796298

RESUMEN

Recent evidence suggests that neurons in primary sensory cortex arrange into competitive groups, representing stimuli by their joint activity rather than as independent feature analysers. A possible explanation for these results is that sensory cortex implements attractor dynamics, although this proposal remains controversial. Here we report that fast attractor dynamics emerge naturally in a computational model of a patch of primary visual cortex endowed with realistic plasticity (at both feedforward and lateral synapses) and mutual inhibition. When exposed to natural images (but not random pixels), the model spontaneously arranges into competitive groups of reciprocally connected, similarly tuned neurons, while developing realistic, orientation-selective receptive fields. Importantly, the same groups are observed in both stimulus-evoked and spontaneous (stimulus-absent) activity. The resulting network is inhibition-stabilized and exhibits fast, non-persistent attractor dynamics. Our results suggest that realistic plasticity, mutual inhibition and natural stimuli are jointly necessary and sufficient to generate attractor dynamics in primary sensory cortex.


Asunto(s)
Corteza Visual/embriología , Corteza Visual/fisiología , Potenciales de Acción/fisiología , Algoritmos , Animales , Simulación por Computador , Potenciales de la Membrana/fisiología , Ratones , Modelos Neurológicos , Red Nerviosa/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Sinapsis/fisiología
9.
J AAPOS ; 20(1): 1.e1-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26917086

RESUMEN

Amblyopia is defined as a loss of letter recognition visual acuity in the affected eye; however, studies in both nonhuman primates and man have shown that other important aspects of vision, including color, motion, and contour perception, are also abnormal. The anatomical changes that occur in the lateral geniculate nucleus and visual cortex following monocular visual deprivation affect both eyes and follow very different patterns with deprivation that begins at different ages and differ markedly in the magnocellular and parvocellular pathways. The interactions between the eyes and the requirements for recovery are very different following onset at different ages and differ for magnocellular and parvocellular pathways. Electrophysiological and psychophysical studies in man show different patterns of change in patients with strabismic amblyopia of early and late onset and abnormalities of color and motion processing that affect both amblyopic and fellow eyes and differ with age of onset. Abnormal visual experience also has more general effects on development, with amblyopic children showing abnormalities of eye-hand coordination when using either their amblyopic or fellow eyes, and abnormalities of reading. Differential effects of abnormal visual experience and treatment on magnocellular and parvocellular pathways may account for some of the visual deficits and treatment failures seen in amblyopia.


Asunto(s)
Ambliopía , Ambliopía/fisiopatología , Animales , Percepción de Color/fisiología , Predominio Ocular/fisiología , Cuerpos Geniculados/embriología , Cuerpos Geniculados/crecimiento & desarrollo , Cuerpos Geniculados/fisiología , Humanos , Percepción de Movimiento/fisiología , Agudeza Visual/fisiología , Corteza Visual/embriología , Corteza Visual/crecimiento & desarrollo , Corteza Visual/fisiología
10.
J Cell Sci ; 128(4): 768-80, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25526735

RESUMEN

During cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner. The NR1 and NR2B subunits (also known as GRIN1 and GRIN2B, respectively) were found within the active zone membrane, where they could respond to synaptic glutamate release. Surprisingly, NR1 also appeared in glutamatergic and GABAergic synaptic vesicles. During synaptogenesis, NR1 was mobile throughout axons - including growth cones and filopodia, structures that are involved in synaptogenesis. Upon synaptogenic contact, NMDA receptors were quickly recruited to terminals by neuroligin-1 signaling. Unlike dendrites, the trafficking and distribution of axonal NR1 were insensitive to activity changes, including NMDA exposure, local glutamate uncaging or action potential blockade. These results support the idea that presynaptic NMDARs play an early role in presynaptic development.


Asunto(s)
Terminales Presinápticos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vesículas Sinápticas/metabolismo , Corteza Visual/embriología , Animales , Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Dendritas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Neurotransmisores/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Presinapticos/metabolismo , Transducción de Señal , Transmisión Sináptica/fisiología
11.
Cell Rep ; 8(4): 1006-17, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25088424

RESUMEN

How axons select their appropriate targets in the brain remains poorly understood. Here, we explore the cellular mechanisms of axon target matching in the developing visual system by comparing four transgenic mouse lines, each with a different population of genetically labeled retinal ganglion cells (RGCs) that connect to unique combinations of brain targets. We find that the time when an RGC axon arrives in the brain is correlated with its target selection strategy. Early-born, early-arriving RGC axons initially innervate multiple targets. Subsequently, most of those connections are removed. By contrast, later-born, later-arriving RGC axons are highly accurate in their initial target choices. These data reveal the diversity of cellular mechanisms that mammalian CNS axons use to pick their targets and highlight the key role of birthdate and outgrowth timing in influencing this precision. Timing-based mechanisms may underlie the assembly of the other sensory pathways and complex neural circuitry in the brain.


Asunto(s)
Axones/fisiología , Células Ganglionares de la Retina/fisiología , Animales , Apoptosis , Cadherinas/metabolismo , Femenino , Ratones Transgénicos , Quiasma Óptico/citología , Quiasma Óptico/embriología , Receptores de Dopamina D4/metabolismo , Retina/citología , Retina/embriología , Corteza Visual/citología , Corteza Visual/embriología , Corteza Visual/crecimiento & desarrollo
12.
Semin Cell Dev Biol ; 35: 165-72, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25042849

RESUMEN

The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps.


Asunto(s)
Encéfalo/fisiología , Proteínas de Homeodominio/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Corteza Visual/fisiología , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Mapeo Encefálico , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Corteza Somatosensorial/embriología , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/fisiología , Corteza Visual/embriología , Corteza Visual/crecimiento & desarrollo , Vías Visuales/embriología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/fisiología
13.
Science ; 342(6162): 1114-8, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24179155

RESUMEN

Experience-dependent structural changes in the developing brain are fundamental for proper neural circuit formation. Here, we show that during the development of the sensory cortex, dendritic field orientation is controlled by the BTB/POZ domain-containing 3 (BTBD3). In developing mouse somatosensory cortex, endogenous Btbd3 translocated to the cell nucleus in response to neuronal activity and oriented primary dendrites toward active axons in the barrel hollow. Btbd3 also directed dendrites toward active axon terminals when ectopically expressed in mouse visual cortex or normally expressed in ferret visual cortex. BTBD3 regulation of dendrite orientation is conserved across species and cortical areas and shows how high-acuity sensory function may be achieved by the tuning of subcellular polarity to sources of high sensory activity.


Asunto(s)
Axones/fisiología , Polaridad Celular , Dendritas/fisiología , Neocórtex/embriología , Red Nerviosa/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Corteza Visual/embriología , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Hurones , Técnicas de Silenciamiento del Gen , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética
14.
Dev Neurobiol ; 73(9): 688-701, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23696545

RESUMEN

The extrinsic sensory stimulation plays a crucial role in the formation and integration of sensory modalities during development. Postnatal behavior is thereby influenced by the type and timing of presentation of prenatal sensory stimuli. In this study, fertilized eggs of white Leghorn chickens during incubation were exposed to either species-specific calls or no sound. To find the prenatal critical period when auditory stimulation can modulate visual system development, the former group was divided into three subgroups: in subgroup A (SGA), the stimulus was provided during embryonic day (E)10 to E16, in SGB E17- hatching, and in SGC E10-hatching. The auditory and visual perceptual learning was recorded at posthatch day (PH) 1-3, whereas synaptic plasticity (evident from synaptophysin and PSD-95 expression), was observed at E19, E20, and PH 1-3. An increased number of responders were observed in both auditory and visual preference tests at PH 1 following stimulation. Although a decrease in latency of entry and an increase in total time spent were observed in all stimulated groups, it was most significant in SGC in auditory preference and in SGB and SGC in visual preference test. The auditory cortex of SGC and visual Wulst of SGB and SGC revealed higher expression of synaptic proteins, compared to control and SGA. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results indicate facilitation of postnatal behaviour and synaptogenesis in both auditory and visual systems following prenatal repetitive auditory stimulation, only when given during prenatal critical period of development.


Asunto(s)
Corteza Auditiva/embriología , Período Crítico Psicológico , Corteza Visual/embriología , Estimulación Acústica , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiología , Vías Auditivas/embriología , Vías Auditivas/fisiología , Percepción Auditiva , Embrión de Pollo , Pollos , Aprendizaje Discriminativo , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Sinapsis/metabolismo , Sinaptofisina/metabolismo , Corteza Visual/metabolismo , Corteza Visual/fisiología , Vías Visuales/embriología , Vías Visuales/fisiología
15.
Nat Neurosci ; 16(5): 543-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525041

RESUMEN

Neurons require trophic support during neural circuit formation; however, how the cellular milieu contributes to neuronal survival remains unclear. We found that layer V cortical neurons require support from microglia for survival during postnatal development. Specifically, we found that microglia accumulated close to the subcerebral and callosal projection axons in the postnatal brain. Inactivation of microglia by minocycline treatment or transient ablation of microglia in CD11b-DTR transgenic mice led to increased apoptosis, specifically in layer V subcerebral and callosal projection neurons. CX3CR1 in microglia was required for the survival of layer V neurons. Microglia consistently promoted the survival of cortical neurons in vitro. In addition, we identified microglia-derived IGF1 as a trophic factor that maintained neuronal survival. Our results highlight a neuron-glia interaction that is indispensable for network formation during a specific period in the developing brain.


Asunto(s)
Apoptosis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Microglía/fisiología , Neuronas/fisiología , Corteza Visual , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocinas CX3C , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Técnicas de Cocultivo , Toxina Diftérica/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Receptores de Quimiocina/deficiencia , Corteza Visual/citología , Corteza Visual/embriología , Corteza Visual/crecimiento & desarrollo
16.
J Neurosci ; 31(33): 11894-904, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21849550

RESUMEN

Postsynaptic density 95 (PSD-95), the major scaffold at excitatory synapses, is critical for synapse maturation and learning. In rodents, eye opening, the onset of pattern vision, triggers a rapid movement of PSD-95 from visual neuron somata to synapses. We showed previously that the PI3 kinase-Akt pathway downstream of BDNF/TrkB signaling stimulates synaptic delivery of PSD-95 via vesicular transport. However, vesicular transport requires PSD-95 palmitoylation to attach it to a lipid membrane. Also, PSD-95 insertion at synapses is known to require this lipid modification. Here, we show that BDNF/TrkB signaling is also necessary for PSD-95 palmitoylation and its transport to synapses in mouse visual cortical layer 2/3 neurons. However, palmitoylation of PSD-95 requires the activation of another pathway downstream of BDNF/TrkB, namely, signaling through phospholipase Cγ and the brain-specific PKC variant protein kinase M ζ (PKMζ). We find that PKMζ selectively regulates phosphorylation of the palmitoylation enzyme ZDHHC8. Inhibition of PKMζ results in a reduction of synaptic PSD-95 accumulation in vivo, which can be rescued by overexpressing ZDHHC8. Therefore, TrkB and PKMζ, two critical regulators of synaptic plasticity, facilitate PSD-95 targeting to synapses. These results also indicate that palmitoylation can be regulated by a trophic factor. Our findings have implications for neurodevelopmental disorders as well as aging brains.


Asunto(s)
Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa C/fisiología , Receptor trkB/fisiología , Sinapsis/metabolismo , Corteza Visual/embriología , Corteza Visual/metabolismo , Animales , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Sistemas de Liberación de Medicamentos , Femenino , Guanilato-Quinasas/antagonistas & inhibidores , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Proteína Quinasa C/antagonistas & inhibidores , Transporte de Proteínas/fisiología , Sinapsis/química , Corteza Visual/enzimología
17.
J Neurosci ; 31(20): 7456-70, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21593329

RESUMEN

Dendritic morphology determines the kinds of input a neuron receives, having a profound impact on neural information processing. In the mammalian cerebral cortex, excitatory neurons have been ascribed to one of two main dendritic morphologies, either pyramidal or stellate, which differ mainly on the extent of the apical dendrite. Developmental mechanisms regulating the emergence and refinement of dendritic morphologies have been studied for cortical pyramidal neurons, but little is known for spiny stellate neurons. Using biolistics to label single cells on acute brain slices of the ferret primary visual cortex, we show that neurons in layer 4 develop in a two-step process: initially, all neurons appear pyramidal, growing a prominent apical dendrite and few small basal dendrites. Later, a majority of these neurons show a change in the relative extent of basal and apical dendrites that results in a gradual sculpting into a stellate morphology. We also find that ∼ 22% of neurons maintain the proportionality of their dendritic arbors, remaining as pyramidal cells at maturity. When ferrets were deprived of retinal input at early stages of postnatal development by binocular enucleation, a significant proportion of layer 4 spiny neurons failed to remodel their apical dendrites, and ∼ 55% remained as pyramidal neurons. Our results demonstrate that cortical spiny stellate neurons emerge by differential sculpting of the dendritic arborizations of an initial pyramidal morphology and that sensory input plays a fundamental role in this process.


Asunto(s)
Dendritas , Neuronas/citología , Retina/citología , Corteza Visual/citología , Corteza Visual/crecimiento & desarrollo , Animales , Dendritas/fisiología , Femenino , Hurones , Ratones , Ratones Endogámicos ICR , Neuronas/fisiología , Embarazo , Retina/embriología , Retina/fisiología , Corteza Visual/embriología , Vías Visuales/citología , Vías Visuales/embriología , Vías Visuales/crecimiento & desarrollo
18.
J Neurosci ; 31(4): 1545-58, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21273439

RESUMEN

NrCAM is a neural cell adhesion molecule of the L1 family that has been linked to autism spectrum disorders, a disease spectrum in which abnormal thalamocortical connectivity may contribute to visual processing defects. Here we show that NrCAM interaction with neuropilin-2 (Npn-2) is critical for semaphorin 3F (Sema3F)-induced guidance of thalamocortical axon subpopulations at the ventral telencephalon (VTe), an intermediate target for thalamic axon sorting. Genetic deletion of NrCAM or Npn-2 caused contingents of embryonic thalamic axons to misproject caudally in the VTe. The resultant thalamocortical map of NrCAM-null mutants showed striking mistargeting of motor and somatosensory thalamic axon contingents to the primary visual cortex, but retinogeniculate targeting and segregation were normal. NrCAM formed a molecular complex with Npn-2 in brain and neural cells, and was required for Sema3F-induced growth cone collapse in thalamic neuron cultures, consistent with a vital function for NrCAM in Sema3F-induced axon repulsion. NrCAM-null mice displayed reduced responses to visual evoked potentials recorded from layer IV in the binocular zone of primary visual cortex (V1), particularly when evoked from the ipsilateral eye, indicating abnormal visual acuity and ocularity. These results demonstrate that NrCAM is required for normal maturation of cortical visual acuity, and suggest that the aberrant projection of thalamic motor and somatosensory axons to the visual cortex in NrCAM-null mutant mice impairs cortical functions.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular/fisiología , Corteza Motora/ultraestructura , Corteza Somatosensorial/ultraestructura , Tálamo/ultraestructura , Agudeza Visual , Corteza Visual/ultraestructura , Animales , Moléculas de Adhesión Celular/genética , Potenciales Evocados Visuales , Femenino , Conos de Crecimiento/fisiología , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Corteza Motora/embriología , Corteza Motora/crecimiento & desarrollo , Proteínas del Tejido Nervioso/fisiología , Neuropilina-2/genética , Neuropilina-2/fisiología , Corteza Somatosensorial/embriología , Corteza Somatosensorial/crecimiento & desarrollo , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Corteza Visual/embriología , Corteza Visual/crecimiento & desarrollo
19.
PLoS One ; 5(12): e15211, 2010 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21170332

RESUMEN

The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs) during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal). Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.


Asunto(s)
Corteza Cerebral/embriología , Regulación del Desarrollo de la Expresión Génica , Retina/embriología , Animales , Bromodesoxiuridina/farmacología , Sistema Nervioso Central/embriología , Colforsina/farmacología , Inmunohistoquímica/métodos , Hibridación in Situ , Inyecciones Intraoculares , Antígeno Ki-67/biosíntesis , Ratones , Modelos Biológicos , Factores de Tiempo , Corteza Visual/embriología
20.
J Anat ; 217(4): 449-68, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20722872

RESUMEN

The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain.


Asunto(s)
Plasticidad Neuronal/fisiología , Corteza Visual/crecimiento & desarrollo , Corteza Visual/fisiología , Adulto , Animales , Lesiones Encefálicas/fisiopatología , Efrinas/metabolismo , Humanos , Inmunohistoquímica , Neocórtex/fisiología , Primates , Recuperación de la Función/fisiología , Tálamo/fisiología , Corteza Visual/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA