Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.462
1.
Article En | MEDLINE | ID: mdl-38767617

A Gram-stain-negative bacterium, designated LG-2T, was isolated from sludge collected at a pesticide-manufacturing factory in Jiangsu Province, PR China. Cells of strain LG-2T were strictly aerobic, non-motile and spherical. Growth was observed at 15-42 °C (optimum, 30 °C), pH 6.0-9.0 (optimum, pH 7.0) and 0-3.0 % (w/v) NaCl (optimum, 1.0 %). LG-2T showed 95.5-96.9 % 16S rRNA sequence similarity to type strains in the genera Pusillimonas, Bordetella, Parapusillimonas, Candidimonas and Paracandidimonas of the family Alcaligenaceae. The phylogenomic tree indicated that strain LG-2T was clustered in the family Alcaligenaceae and formed a clade with Paracandidimonas soli IMT-305T, while the phylogenetic trees based on 16S rRNA gene sequences indicated that strain LG-2T formed a distinct clade within the family Alcaligenaceae. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between LG-2T and its closely related type strains in the genera Pusillimonas, Bordetella, Parapusillimonas, Candidimonas and Paracandidimonas were 70.8-75.3, 18.9-23.7 and 59.6 %-69.3 %, respectively. The major cellular fatty acids were C16 : 0, C17 : 0 cyclo, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 2 (C12 : 0 aldehyde and/or unknown 10.928). The predominant menaquinone was Q-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, three aminolipids and nine unknown polar lipids. The genome size of strain LG-2T was 3.2 Mb and the DNA G+C content was 63.4 mol%. On the basis of the phenotypic, phylogenetic and genomic results from this study, strain LG-2T represents a novel species of a new genus in the family Alcaligenaceae, for which the name Yanghanlia caeni gen. nov., sp. nov. is proposed, with strain LG-2T (=KCTC 8084T= CCTCC AB 2023123T) as the type strain.


Alcaligenaceae , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Sewage , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Fatty Acids/analysis , DNA, Bacterial/genetics , China , Sewage/microbiology , Alcaligenaceae/genetics , Alcaligenaceae/classification , Alcaligenaceae/isolation & purification , Pesticides , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis
2.
Article En | MEDLINE | ID: mdl-38767616

A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of ß-glucosidase. The recombinant ß-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.


Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Fermentation , Ginsenosides , Nucleic Acid Hybridization , Panax notoginseng , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptomyces , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Streptomyces/isolation & purification , Streptomyces/genetics , Streptomyces/classification , Vitamin K 2/analogs & derivatives , DNA, Bacterial/genetics , China , Panax notoginseng/microbiology , Ginsenosides/metabolism , Peptidoglycan , Edible Grain/microbiology , Diaminopimelic Acid , Phospholipids/chemistry , Base Composition
3.
Nutrients ; 16(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732584

The available evidence on vitamin K status in cystic fibrosis (CF) is scarce, lacking data on vitamin K2 (menaquinones-MK). Therefore, we assessed vitamin K1, MK-4 and MK-7 concentrations (LC-MS/MS) in 63 pancreatic insufficient and modulator naïve CF patients, and compared to 61 healthy subjects (HS). Vitamin K1 levels did not differ between studied groups. MK-4 concentrations were higher (median <1st-3rd quartile>: 0.778 <0.589-1.086> vs. 0.349 <0.256-0.469>, p < 0.0001) and MK-7 levels lower (0.150 <0.094-0.259> vs. 0.231 <0.191-0.315>, p = 0.0007) in CF patients than in HS. MK-7 concentrations were higher in CF patients receiving K1 and MK-7 supplementation than in those receiving vitamin K1 alone or no supplementation. Moreover, vitamin K1 concentrations depended on the supplementation regime. Based on multivariate logistic regression analysis, we have found that MK-7 supplementation dose has been the only predictive factor for MK-7 levels. In conclusion, vitamin K1 levels in CF are low if not currently supplemented. MK-4 concentrations in CF patients supplemented with large doses of vitamin K1 are higher than in HS. MK-7 levels in CF subjects not receiving MK-7 supplementation, with no regard to vitamin K1 supplementation, are low. There do not seem to be any good clinical predictive factors for vitamin K status.


Cystic Fibrosis , Prothrombin , Vitamin K 1 , Vitamin K 2 , Humans , Cystic Fibrosis/blood , Female , Male , Vitamin K 2/blood , Vitamin K 2/analogs & derivatives , Cross-Sectional Studies , Prothrombin/analysis , Adolescent , Adult , Vitamin K 1/administration & dosage , Vitamin K 1/blood , Young Adult , Nutritional Status , Dietary Supplements , Vitamin K Deficiency/blood , Vitamin K/blood
4.
Article En | MEDLINE | ID: mdl-38805028

A polyphasic approach was used to characterize two novel actinobacterial strains, designated PKS22-38T and LSe1-13T, which were isolated from mangrove soils and leaves of halophyte Sesuvium portulacastrum (L.), respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that they belonged to the genus Gordonia and were most closely related to three validly published species with similarities ranging from 98.6 to 98.1 %. The genomic DNA G+C contents of strains PKS22-38T and LSe1-13T were 67.3 and 67.2 mol%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 93.3 and 54.9 %, respectively, revealing that they are independent species. Meanwhile, the ANI and dDDH values between the two novel strains and closely related type strains were below 80.5 and 24.0 %, respectively. Strains PKS22-38T and LSe1-13T contained C16 : 0, C18 : 1 ω9c and C18 : 0 10-methyl (TBSA) as the major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the main phospholipids. The predominant menaquinone was MK-9(H2). Based on phenotypic, chemotaxonomic, phylogenetic and genomic data, strains PKS22-38T and LSe1-13T are considered to represent two novel species within the genus Gordonia, for which the names Gordonia prachuapensis sp. nov. and Gordonia sesuvii sp. nov. are proposed, with strain PKS22-38T (=TBRC 17540T=NBRC 116256T) and strain LSe1-13T (=TBRC 17706T=NBRC 116396T) as the type strains, respectively.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , Plant Leaves , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Plant Leaves/microbiology , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Fatty Acids/chemistry , Fatty Acids/analysis , Thailand , Salt-Tolerant Plants/microbiology , Geologic Sediments/microbiology , Phospholipids/analysis , Phospholipids/chemistry , Wetlands , Gordonia Bacterium/genetics , Gordonia Bacterium/classification , Gordonia Bacterium/isolation & purification
5.
Syst Appl Microbiol ; 47(2-3): 126514, 2024 May.
Article En | MEDLINE | ID: mdl-38735274

Use of curldlan, an insoluble ß-1,3-glucan, as an enrichment substrate under aerobic conditions resulted in the selection from hypersaline soda lakes of a single natronarchaeon, strain AArc-curdl1. This organism is an obligately aerobic saccharolytic, possessing a poorly explored (in Archaea) potential to utilize beta-1-3 glucans, being only a second example of a haloarchaeon with this ability known in pure culture. The main phenotypic property of the isolate is the ability to grow with insoluble ß-1,3-backboned glucans, i.e. curdlan and pachyman. Furthermore, the strain utilized starch family α-glucans, beta-fructan inulin and a limited spectrum of sugars. The major ether-bound membrane polar phospholipids included PGP-Me and PG. The glyco- and sulfolipids were absent. The major respiratory menaquinone is MK-8:8. According to phylogenomic analysis, AArc-curdl1 represents a separate species in the recently described genus Natronosalvus within the family Natrialbaceae. The closest related species is Natronosalvus amylolyticus (ANI, AAI and DDH values of 90.2, 91.6 and 44 %, respectively). On the basis of its unique physiological properties and phylogenomic distance, strain AArc-curdl1T is classified as a novel species Natronosalvus hydrolyticus sp. nov. (=JCM 34865 = UQM 41566).


Lakes , Phylogeny , RNA, Ribosomal, 16S , beta-Glucans , Lakes/microbiology , beta-Glucans/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phospholipids/analysis , Phospholipids/chemistry , Salinity , DNA, Archaeal/genetics , DNA, Archaeal/chemistry , Vitamin K 2/analysis , Vitamin K 2/chemistry , Vitamin K 2/analogs & derivatives
6.
Article En | MEDLINE | ID: mdl-38787370

A Gram-stain-positive, aerobic, non-mobile and spherical strain, designated ZS9-10T, belonging to the genus Deinococcus was isolated from soil sampled at the Chinese Zhong Shan Station, Antarctica. Growth was observed in the presence of 0-4 % (w/v) NaCl, at pH 7.0-8.0 and at 4-25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZS9-10T formed a lineage in the genus Deinococcus. It exhibited highest sequence similarity (97.4 %) to Deinococcus marmoris DSM 12784T. The major phospholipids of ZS9-10T were unidentified phosphoglycolipid, unidentified glycolipids and unidentified lipids. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C16 : 1 ω7c. MK-8 was the predominant respiratory quinone. The digital DNA-DNA hybridization and average nucleotide identity values between strain ZS9-10T and its close relative D. marmoris DSM 12784T were 27.4 and 83.9 %, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, named Deinococcus arenicola sp. nov., is proposed. The type strain iis ZS9-10T (=CCTCC AB 2019392T=KCTC43192T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Deinococcus , Fatty Acids , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Antarctic Regions , RNA, Ribosomal, 16S/genetics , Deinococcus/genetics , Deinococcus/classification , Deinococcus/isolation & purification , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Bacterial/genetics , Phospholipids/analysis , Phospholipids/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Vitamin K 2/chemistry , Sand/microbiology
7.
Curr Microbiol ; 81(7): 187, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777886

Strain wdc7T, a rod-shaped bacterium, was isolated from soil in the Gotjawal Forest on Jeju Island, South Korea. Strain wdc7T was Gram stain-negative, facultatively anaerobic, catalase- and oxidase positive, yellow pigmented, and non-flagellated. It grew at 4-37 °C and pH 5.0-8.0 in 0-3% (w/v) NaCl. 16S rRNA gene sequencing analysis revealed that strain wdc7T belonged to the genus Chryseobacterium and was most closely related to Chryseobacterium salivictor NBC 122T, with a sequence similarity of 98.51%. Menaquinone 6 was the sole respiratory quinone, and C15:0 anteiso, C15:0 iso, and summed feature 9 were the major fatty acids. The genome length was 3.30 Mbp, with a 37% G + C content. Average amino acid identity, average nucleotide identity, and digital DNA-DNA relatedness between strain wdc7T and C. salivictor NBC 122T were 93.52%, 92.80%, and 49.7%, respectively. Digital genomic and polyphasic analyses showed that strain wdc7T likely represented a new species of the genus Chryseobacterium. We proposed the name Chryseobacterium gotjawalense sp. nov., with wdc7T (= KCTC 92440T = JCM 35602T) as the type strain.


Base Composition , Chryseobacterium , DNA, Bacterial , Fatty Acids , Forests , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology , Chryseobacterium/genetics , Chryseobacterium/classification , Chryseobacterium/isolation & purification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Republic of Korea , Fatty Acids/analysis , Islands , Bacterial Typing Techniques , Sequence Analysis, DNA , Genome, Bacterial , Vitamin K 2/analysis , Vitamin K 2/analogs & derivatives
8.
Article En | MEDLINE | ID: mdl-38752993

Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a stable subclade with the nearby species Pedobacter mongoliensis 1-32T, as well as the genera Pararcticibacter and Arcticibacter. Furthermore, P. mongoliensis 1-32T formed a separate deep-branching lineage and did not form a cluster with members of the genus Pedobacter. The average nucleotide identity and digital DNA-DNA hybridization values between SYSU D00823T and SYSU D00873T and related species were well below the thresholds for species delineation (<81.0 % and <24.0 %, respectively). The genomes of SYSU D00823T and SYSU D00873T were 6.19 and 6.43 Mbp in size with 40.4 % and 40.5 % DNA G+C contents, respectively. The predominant fatty acids (>10 %) of SYSU D00823T and SYSU D00873T were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). Menaquinone-7 was the only respiratory quinone. The major polar lipids were phosphatidylethanolamine, glycosphingolipid, aminoglycolipid/glycolipid, aminophospholipid and three or four unidentified polar lipids. These data indicated that strains SYSU D00823T and SYSU D00873T should be assigned to two novel species of a new genus within the family Sphingobacteriaceae, for which the names Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov. are proposed. The type strains are SYSU D00823T (=CGMCC 1.18630T=MCCC 1K04973T=KCTC 82278T) and SYSU D00873T (=CGMCC 1.18629T=MCCC 1K04974T=KCTC 82281T), respectively. Accordingly, the reclassification of P. xinjiangensis as Desertivirga xinjiangensis comb. nov., and P. mongoliensis as Paradesertivirga mongoliensis gen. nov., comb. nov. are also proposed.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Desert Climate , Fatty Acids , Pedobacter , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Pedobacter/genetics , Pedobacter/classification , Pedobacter/isolation & purification , Fatty Acids/chemistry , China , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Nucleic Acid Hybridization
9.
Article En | MEDLINE | ID: mdl-38752999

A bacterial strain designated MMS21-TAE1-1T, capable of degrading paraoxon, was isolated from red pepper soil (36° 25' 26.0″ N, 126° 25' 47.0″ E) and subjected to polyphasic taxonomic characterisation. MMS21-TAE1-1T was an aerobic, non-motile and Gram-stain-positive bacterium. MMS21-TAE1-1T showed growth at 10-37 °C (optimum, 30 °C), at pH 4-10 (optimum, pH 7) and in the presence of 0-6 % NaCl (optimum, 0 %). On the basis of the results of 16S rRNA gene sequence analysis, MMS21-TAE1-1T could be assigned to the genus Paenarthrobacter and shared the highest sequence similarities with Paenarthrobacter aurescens NBRC 12136T (99.72 %), then with Paenarthrobacter nitroguajacolicus G2-1T (99.65 %) and Paenarthrobacter ilicis DSM 20138T (99.17 %). However, the results of genome-based comparison using orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridisation indicated that MMS21-TAE1-1T could be readily distinguished from all species of the genus with validly published names. The predominant menaquinone of MMS21-TAE1-1T was MK-9(H2). The diagnostic polar lipids were diphosphatidylglycerol and phosphatidylinositol, and unidentified glycolipids were also present. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0. The chemotaxonomic properties of MMS21-TAE1-1T were generally consistent with those of members of the genus Paenarthrobacter. The genome of MMS21-TAE1-1T contained genes related to degradation of aromatic compounds. It is evident from the results of this study that strain MMS21-TAE1-1T merits recognition as representing a novel species of the genus Paenarthrobacter, for which the name Paenarthrobacter aromaticivorans sp. nov. is proposed. The type strain is MMS21-TAE1-1T (=KCTC 49652T = LMG 32368T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Capsicum/microbiology
10.
Article En | MEDLINE | ID: mdl-38752995

A novel actinobacterium, strain ZYX-F-186T, was isolated from marine sediment sampled on Yongxing Island, Hainan Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain ZYX-F-186T belongs to the genus Phytohabitans, with high similarity to Phytohabitans kaempferiae KK1-3T (98.3 %), Phytohabitans rumicis K11-0047T (98.1 %), Phytohabitans flavus K09-0627T (98.1 %), Phytohabitans houttuyneae K11-0057T (97.9 %), Phytohabitans suffuscus K07-0523T (97.7 %), and Phytohabitans aurantiacus RD004123T (97.7 %). Phylogenetic analysis of 16S rRNA gene sequences showed that the strain formed a single subclade in the genus Phytohabitans. The novel isolate contained meso-diaminopimelic acid, d-glutamic acid, glycine, d-alanine, and l-lysine in the cell wall. The whole-cell sugars were xylose, arabinose, ribose, and rhamnose. The predominant menaquinones were MK-9(H8), MK-9(H6), and MK-9(H4). The characteristic phospholipids were phosphatidylethanolamine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylglycerol, and an unknown phospholipid. The major fatty acids (>5 %) were iso-C16 : 0, anteiso-C17 : 0, and iso-C18 : 0. Genome sequencing showed a DNA G+C content of 71.9 mol%. Low average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values demonstrated that strain ZYX-F-186T could be readily distinguished from its closely related species. Based on its phylogenetic, chemotaxonomic, and physiological characteristics, strain ZYX-F-186T represents a novel species of the genus Phytohabitans, for which the name Phytohabitans maris sp. nov. is proposed. The type strain is ZYX-F-186T (=CGMCC 4.8025T=CCTCC AA 2023025T=JCM 36507T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Vitamin K 2/chemistry , Nucleic Acid Hybridization , Cell Wall/chemistry
11.
Article En | MEDLINE | ID: mdl-38695865

A novel Gram-staining-positive actinobacterium with antimicrobial activity, designated CFH 90308T, was isolated from the sediment of a salt lake in Yuncheng, Shanxi, south-western China. The isolate exhibited the highest 16S rRNA gene sequence similarities to Microbacterium yannicii G72T, Microbacterium hominis NBRC 15708T and Microbacterium xylanilyticum S3-ET (98.5, 98.4 and 98.2 %, respectively), and formed a separate clade with M. xylanilyticum S3-ET in phylogenetic trees. The strain grew at 15-40 ºC, pH 6.0-8.0 and could tolerate NaCl up to a concentration of 15 % (w/v). The whole genome of strain CFH 90308T consisted of 4.33 Mbp and the DNA G+C content was 69.6 mol%. The acyl type of the peptidoglycan was glycolyl and the whole-cell sugars were galactose and mannose. The cell-wall peptidoglycan mainly contained alanine, glycine and lysine. The menaquinones of strain CFH 90308T were MK-12, MK-13 and MK-11. Strain CFH 90308T contained anteiso-C15:0, anteiso-C17:0, iso-C16:0 and iso-C15:0 as the predominant fatty acids. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between CFH 90308T and the other species of the genus Microbacterium were found to be low (ANIb <81.3 %, dDDH <25.6 %). The secondary metabolite produced by strain CFH 90308T showed antibacterial activities against Bacillus subtilis, Pseudomonas syringae, Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus. Based on genotypic, phenotypic and chemotaxonomic results, the isolate is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium salsuginis sp. nov. is proposed. The type strain is CFH 90308T (=DSM 105964T=KCTC 49052T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Microbacterium , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Vitamin K 2/analogs & derivatives , Geologic Sediments/microbiology , Peptidoglycan , Lakes/microbiology , Nucleic Acid Hybridization , Sodium Chloride/metabolism , Genome, Bacterial
12.
Article En | MEDLINE | ID: mdl-38695864

A novel actinobacterium, designated strain CWNU-1T, was isolated from the rhizospheric soil of Fritillaria cirrhosa D. Don and examined using a polyphasic taxonomic approach. The organism developed pale blue aerial mycelia that was simply branched and terminated in open or closed coils of three or more volutions on International Streptomyces Project 3 agar. Spores were ellipsoidal to cylindrical with wrinkled surfaces. The strain showed high 16S rRNA gene sequence similarity to Streptomyces kurssanovii NBRC 13192T (98.8 %), Streptomyces xantholiticus NBRC 13354T (98.7 %) and Streptomyces peucetius JCM 9920T (98.6 %). The phylogenetic result based on 16S rRNA gene and genome sequences clearly demonstrated that strain CWNU-1T formed an independent phylogenetic lineage. On the basis of orthologous average nucleotide identity, CWNU-1T was most closely related to Streptomyces inusitatus NBRC 13601T with 79.3 % identity. The results of the digital DNA-DNA hybridization analysis also indicated low levels of relatedness with other species, as the highest value was observed with S. inusitatus NBRC 13601T (25.3 %). With reference to phenotypic characteristics, phylogenetic data, orthologous average nucleotide identity and digital DNA-DNA hybridization results, strain CWNU-1T was readily distinguished from its most closely related strains and classified as representing a novel species, for which the name Streptomyces albipurpureus sp. nov. is proposed. The type strain is CWNU-1T (=CGMCC 4.7758T=MCCC 1K07402T=JCM 35391T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Fritillaria , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Rhizosphere , Sequence Analysis, DNA , Soil Microbiology , Streptomyces , Streptomyces/genetics , Streptomyces/classification , Streptomyces/isolation & purification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Fritillaria/microbiology , Vitamin K 2/analogs & derivatives
13.
Article En | MEDLINE | ID: mdl-38743481

A Gram-stain-negative, yellow-pigmented, strictly aerobic, non-flagellated, motile by gliding, rod-shaped bacterium, designated strain YSD2104T, was isolated from a coastal sediment sample collected from the southeastern part of the Yellow Sea. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain YSD2104T was closely related to three type strains, Lutimonas vermicola IMCC1616T (97.4 %), Lutimonas saemankumensis SMK-142T (96.9 %), and Lutimonas halocynthiae RSS3-C1T (96.8 %). Strain YSD2104T has a single circular chromosome of 3.54 Mbp with a DNA G+C content of 38.3 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain YSD2104T and the three type strains (L. vermicola IMCC1616 T, L. saemankumensis SMK-142T, and L. halocynthiae RSS3-C1T) were 74.0, 86.2 and 73.6 %, and 17.9, 30.3 and 17.8 %, respectively. Growth was observed at 20-30 °C (optimum, 30 °C), at pH 6.5-8.5 (optimum, pH 7.0), and with NaCl concentrations of 1.5-3.5 % (optimum, 2.5 %). The major carotenoid was zeaxanthin, and flexirubin-type pigment was not produced. The major respiratory quinone was menaquinone-6. The major fatty acids (>10 %) were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), and summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid, two unidentified aminolipids, and eight unidentified lipids. Conclusively, based on this polyphasic approach, we classified strain YSD2104T (=KCTC 102008T=JCM 36287T) as representing a novel species of the genus Lutimonas and proposed the name Lutimonas zeaxanthinifaciens sp. nov.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , Zeaxanthins , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Seawater/microbiology , China
14.
Article En | MEDLINE | ID: mdl-38747701

Two Gram-stain-negative strains, designed SYSU M86414T and SYSU M84420, were isolated from marine sediment samples of the South China Sea (Sansha City, Hainan Province, PR China). These strains were aerobic and could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C), and in the presence of 0-10 % NaCl (w/v; optimum 3 %). The predominant respiratory menaquinone of strains SYSU M86414T and SYSU M84420 was MK-6. The primary cellular polar lipid was phosphatidylethanolamine. The major cellular fatty acids (>10 %) in both strains were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The DNA G+C content of strains SYSU M86414T and SYSU M84420 were both 42.10 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that these novel strains belonged to the genus Flagellimonas and strain SYSU M86414T showed the highest 16S rRNA gene sequence similarity to Flagellimonas marinaquae JCM 11811T (98.83 %), followed by Flagellimonas aurea BC31-1-A7T (98.62 %), while strain SYSU M84420 had highest 16S rRNA gene sequence similarity to F. marinaquae JCM 11811T (98.76 %) and F. aurea BC31-1-A7T (98.55 %). Based on the results of polyphasic analyses, strains SYSU M86414T and SYSU M84420 should be considered to represent a novel species of the genus Flagellimonas, for which the name Flagellimonas halotolerans sp. nov. is proposed. The type strain of the proposed novel isolate is SYSU M86414T (=GDMCC 1.3806T=KCTC 102040T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , China , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , Fatty Acids/analysis , Seawater/microbiology , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Phosphatidylethanolamines , Molecular Sequence Data
15.
Article En | MEDLINE | ID: mdl-38722773

A yellow pigmented, Gram-stain-positive, motile, facultatively anaerobic and irregular rod-shaped bacteria (strain M0-14T) was isolated from a till sample collected from the foreland of a high Arctic glacier near the settlement of Ny-Ålesund in the Svalbard Archipelago, Norway. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that M0-14T formed a lineage within the family Cellulomonadaceae, suborder Micrococcineae. M0-14T represented a novel member of the genus Pengzhenrongella and had highest 16S rRNA gene sequence similarity to Pengzhenrongella sicca LRZ-2T (97.3 %). Growth occurred at 4-25 °C (optimum 4-18 °C), at pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0-5 % (w/v) NaCl. The predominant menaquinone was MK-9(H4) and the major fatty acids were anteiso-C15 : 0, C16 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The major polar lipids were phosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol, one undefined phospholipid and five undefined phosphoglycolipids. The cell-wall diamino acid was l-ornithine whereas rhamnose and mannose were the cell-wall sugars. Polyphosphate particles were found inside the cells of M0-14T. Polyphosphate kinase and polyphosphate-dependent glucokinase genes were detected during genomic sequencing of M0-14. In addition, the complete pstSCAB gene cluster and phnCDE synthesis genes, which are important for the uptake and transport of phosphorus in cells, were annotated in the genomic data. According to the genomic data, M0-14T has a metabolic pathway related to phosphorus accumulation. The DNA G+C content of the genomic DNA was 70.8 %. On the basis of its phylogenetic relationship, phenotypic properties and chemotaxonomic distinctiveness, strain M0-14T represents a novel species of the genus Pengzhenrongella, for which the name Pengzhenrongella phosphoraccumulans sp. nov. is proposed. The type strain is M0-14T (= CCTCC AB 2012967T = NRRL B-59105T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Ice Cover , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Arctic Regions , Fatty Acids/chemistry , Vitamin K 2/analogs & derivatives , DNA, Bacterial/genetics , Ice Cover/microbiology , Phospholipids , Svalbard
16.
Article En | MEDLINE | ID: mdl-38728074

A novel plant-beneficial bacterium strain, designated as JGH33T, which inhibited Peronophythora litchii sporangia germination, was isolated on Reasoner's 2A medium from a litchi rhizosphere soil sample collected in Gaozhou City, Guangdong Province, PR China. Cells of strain JGH33T were Gram-stain-positive, aerobic, non-motile, bent rods. The strain grew optimally at 30-37 °C and pH 6.0-8.0. Sequence similarity analysis based on 16S rRNA genes indicated that strain JGH33T exhibited highest sequence similarity to Sinomonas albida LC13T (99.2 %). The genomic DNA G+C content of the isolate was 69.1 mol%. The genome of JGH33T was 4.7 Mbp in size with the average nucleotide identity value of 83.45 % to the most related reference strains, which is lower than the species delineation threshold of 95 %. The digital DNA-DNA hybridization of the isolate resulted in a relatedness value of 24.9 % with its closest neighbour. The predominant respiratory quinone of JGH33T was MK-9(H2). The major fatty acids were C15 : 0 anteiso (43.4 %), C16 : 0 iso (19.1 %) and C17 : 0 anteiso (19.3 %), and the featured component was C18 : 3 ω6c (1.01 %). The polar lipid composition of strain JGH33T included diphosphatidylglycerol, phosphatidylglycerol, dimannosylglyceride, phosphatidylinositol and glycolipids. On the basis of polyphasic taxonomy analyses data, strain JGH33T represents a novel species of the genus Sinomonas, for which the name Sinomonas terricola sp. nov. is proposed, with JGH33T (=JCM 35868T=GDMCC 1.3730T) as the type strain.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Litchi , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Rhizosphere , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , China , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Litchi/microbiology , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Phospholipids/analysis
17.
Article En | MEDLINE | ID: mdl-38728177

Two Gram-stain-negative, rod-shaped bacteria, designated as strains KJ10-1T and KJ40-1T, were isolated from marine brown algae. Both strains were catalase-positive, oxidase-positive, and facultative aerobic. Strain KJ10-1T exhibited optimal growth at 25 °C, pH 7.0, and 3 % NaCl, whereas strain KJ40-1T showed optimal growth at 25 °C, pH 7.0, and 2 % NaCl. The respiratory quinones of strain KJ10-1T were ubiquinone-8, ubiquinone-7, menaquinone-7, and methylated menaquinone-7, while the respiratory quinone of strain KJ40-1T was only ubiquinone-8. As major fatty acids, strain KJ10-1T contained C16 : 0, C17 : 1 ω8c, iso-C15 : 0, and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and strain KJ40-1T contained C16 : 0 and summed features 3 and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids in strain KJ10-1T were phosphatidylethanolamine, phosphatidylglycerol, and an unidentified aminolipid, whereas those in strain KJ40-1T were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C contents of strains KJ10-1T and KJ40-1T were 42.1 and 40.8 mol%, respectively. Based on 16S rRNA gene sequences, strains KJ10-1T and KJ40-1T exhibited the closest relatedness to Shewanella saliphila MMS16-UL250T (98.6 %) and Vibrio rumoiensis S-1T (95.4 %), respectively. Phylogenetic analyses, based on both 16S rRNA and 92 housekeeping genes, showed that the strains formed distinct phylogenic lineages within the genera Shewanella and Vibrio. Digital DNA-DNA hybridization and orthologous average nucleotide identity values between strain KJ10-1T and other Shewanella species, as well as between strain KJ40-1T and other Vibrio species, were below the thresholds commonly accepted for prokaryotic species delineation. Based on the phenotypic, chemotaxonomic, and phylogenetic data, strains KJ10-1T and KJ40-1T represent novel species of the genera Shewanella and Vibrio, respectively, for which the names Shewanella phaeophyticola sp. nov. and Vibrio algarum sp. nov. are proposed, respectively. The type strains of S. phaeophyticola and V. algarum are KJ10-1T (=KACC 22589T=JCM 35409T) and KJ40-1T (=KACC 22588T=JCM 35410T), respectively.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phaeophyceae , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Shewanella , Ubiquinone , Vibrio , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vibrio/genetics , Vibrio/classification , Vibrio/isolation & purification , Ubiquinone/analogs & derivatives , Shewanella/genetics , Shewanella/isolation & purification , Shewanella/classification , Phaeophyceae/microbiology , Vitamin K 2/analogs & derivatives , Phospholipids , Nucleic Acid Hybridization , Seawater/microbiology
18.
Article En | MEDLINE | ID: mdl-38713185

An aerobic, Gram-stain-negative and short rod-shaped bacterial strain, designated M6-31T, was isolated from rice paddy soil sampled in Miryang, Republic of Korea. Growth was observed at 4-35 °C (optimum, 28 °C), pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 0-4 % (w/v) NaCl (optimum, 0 % w/v). Phylogenetic analysis based on 16S rRNA gene sequences grouped strain M6-31T with Sphingobacterium bambusae IBFC2009T, Sphingobacterium griseoflavum SCU-B140T and Sphingobacterium solani MLS-26-JM13-11T in the same clade, with the 16S rRNA gene sequence similarities ranging from 95.8 to 96.6 %. A genome-based phylogenetic tree reconstructed by using all publicly available Sphingobacterium genomes placed strain M6-31T with S. bambusae KACC 22910T, 'Sphingobacterium deserti' ACCC 05744T, S. griseoflavum CGMCC 1.12966T and Sphingobacterium paludis CGMCC 1.12801T. Orthologous average nucleotide identity and digital DNA-DNA hybridization values between strain M6-31T and its closely related strains were lower than 74.6 and 22.0 %, respectively. The respiratory quinone was menaquinone-7, and the major polar lipid was phosphatidylethanolamine. The major fatty acids (>10 %) were C15 : 0 iso, C17 : 0 iso 3OH and summed feature 3. The phenotypic, chemotaxonomic and genotypic data obtained in this study showed that strain M6-31T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium oryzagri sp. nov. (type strain M6-31T=KACC 22765T=JCM 35893T) is proposed.


Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Oryza , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Sphingobacterium , Vitamin K 2 , Vitamin K 2/analogs & derivatives , Oryza/microbiology , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Sphingobacterium/genetics , Sphingobacterium/isolation & purification , Sphingobacterium/classification , DNA, Bacterial/genetics , Republic of Korea , Vitamin K 2/analysis , Base Composition , Phosphatidylethanolamines
19.
Article En | MEDLINE | ID: mdl-38713186

Two novel actinobacteria, designated as LP05-1T and LP11T, were isolated from the lichen Pyxine cocoes (Sw.) Nyl. collected in Bangkok, Thailand. Genotypic and phenotypic analyses revealed that both strains represented members of the genus Streptomyces. The 16S rRNA gene of LP05-1T showed the highest similarity to the genome of Streptomyces gelaticus (98.41 %), while the 16S rRNA gene of LP11T was most similar to that of Streptomyces cinerochromogenes (98.93 %). The major menaquinones in LP05-1T were MK-9(H8), MK-9(H6), MK-9(H4) and MK-9(H2), and in LP11T, they were MK-9(H8) and MK-9(H6). Both strains exhibited the major fatty acids iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, with LP05-1T also possessing iso-C17 : 0. The polar lipids of LP05-1T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified lipid, while those of LP11T consisted of phosphatidylethanolamine, lyso-phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid and an unidentified glycolipid. The digital DNA-DNA hybridisation (dDDH) and average nucleotide identity (ANI) values indicated that both strains are distinct from each other with values below 70 and 95 %, respectively. dDDH, ANI by blast (ANIb) and ANI by MUMmer (ANIm) values between LP05-1T and its closely related type strains were 26.07-26.80 %, 81.24-82.01 % and 86.82-86.96 %, respectively, while those for LP11T and its closely related type strains were 30.70-31.70 %, 84.09-85.31 % and 88.02-88.39 %, respectively. The results of the taxonomic investigation, including dDDH and ANI values, indicate that LP05-1T and LP11T are novel type strains of two novel species within the genus Streptomyces. The names proposed are Streptomyces pyxinae sp. nov. for strain LP05-1T (=TBRC 15494T, =NBRC 115434T) and Streptomyces pyxinicus sp. nov. for strain LP11T (=TBRC 15493T, =NBRC 115421T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Lichens , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptomyces , Vitamin K 2 , Vitamin K 2/analogs & derivatives , RNA, Ribosomal, 16S/genetics , Lichens/microbiology , Vitamin K 2/analysis , DNA, Bacterial/genetics , Streptomyces/genetics , Streptomyces/isolation & purification , Streptomyces/classification , Fatty Acids/chemistry , Thailand , Nucleic Acid Hybridization , Phospholipids
20.
Article En | MEDLINE | ID: mdl-38717929

Two yellow-coloured strains, F-29T and F-340T, were isolated from fish farms in Antalya and Mugla in 2015 and 2017 during surveillance studies. The 16S rRNA gene sequence analysis showed that both strains belong to the genus Flavobacterium. A polyphasic approach involving a comprehensive genome analysis was employed to ascertain the taxonomic provenance of the strains. The overall genome-relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Flavobacterium were found to be well below the established thresholds of 70 and 95 %, respectively. The whole-genome-based phylogenetic analysis revealed that strain F-29T is closely related to Flavobacterium granuli (dDDH 39.3 % and ANI 89.4 %), while strain F-340T has a close relationship with the type strain of Flavobacterium pygoscelis (dDDH 25.6 % and ANI 81.5 %). Both strains were psychrotolerant with an optimum growth temperature of 25 °C. The chemotaxonomic characteristics of the strains were typical of the genus Flavobacterium. Both strains had phosphatidylethanolamine, aminolipids and unidentified lipids in their polar lipid profile and MK-6 as the isoprenoid quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The genome size of the strains was 3.5 Mb, while G+C contents were 35.3 mol% for strain F-29T and 33.4 mol% for strain F-340T. Overall, the characterizations confirmed that both strains are representatives of two novel species within the genus Flavobacterium, for which the names Flavobacterium acetivorans sp. nov. and Flavobacterium galactosidilyticum sp. nov. are proposed, with F-29T (JCM 34193T=KCTC 82253T) and F-340T (JCM 34203T=KCTC 82263T) as the type strains, respectively.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Fishes , Flavobacterium , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , Flavobacterium/genetics , Flavobacterium/classification , Flavobacterium/isolation & purification , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Animals , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Fishes/microbiology , Genome, Bacterial , Aquaculture , Phosphatidylethanolamines
...