Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.041
1.
Medicine (Baltimore) ; 103(18): e38024, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701268

BACKGROUND: This study aimed to investigate whether lower limb joints mutually compensate for each other, resulting in motor synergy that suppresses toe vertical position fluctuation, and whether walking speeds affect lower limb synergy. METHODS: Seventeen male university students walked at slow (0.85 ±â€…0.04 m/s), medium (1.43 ±â€…0.05 m/s) and fast (1.99 ±â€…0.06 m/s) speeds on a 15-m walkway while lower limb kinematic data were collected. Uncontrolled manifold analysis was used to quantify the strength of synergy. Two-way (speed × phase) repeated-measures analysis of variance was used to analyze all dependent variables. RESULTS: A significant speed-by-phase interaction was observed in the synergy index (SI) (P  < .001). At slow walking speeds, subjects had greater SI during mid-swing (P  < .001), while at fast walking speeds, they had greater SI during early-swing (P  < .001). During the entire swing phase, fast walking exhibited lower SI values than medium (P  = .005) and slow walking (P  = .027). CONCLUSION: Kinematic synergy plays a crucial role in controlling toe vertical position during the swing phase, and fast walking exhibits less synergy than medium and slow walking. These findings contribute to a better understanding of the role of kinematic synergy in gait stability and have implications for the development of interventions aimed at improving gait stability and reducing the risk of falls.


Lower Extremity , Toes , Walking Speed , Humans , Male , Biomechanical Phenomena , Young Adult , Walking Speed/physiology , Lower Extremity/physiology , Toes/physiology , Gait/physiology , Walking/physiology , Adult
2.
BMC Geriatr ; 24(1): 393, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702602

BACKGROUND: Depression is a multifaceted condition with a high prevalence and burden to society. Handgrip strength (HGS) and gait speed (GS) are indices of physical health, which is linked to mental health. Previous studies have shown heterogeneity among countries in the association of physical parameters and depression. In this study, we aimed to investigate the association of HGS and GS with depressive symptoms in older adults. METHODS: This is a cross-sectional study analyzing data from the Birjand Longitudinal Aging Study, a cohort of community-dwelling older adults (≥ 60 years old). Depressive symptoms were assessed by the nine-item Patient Health Questionnaire. HGS was measured with a hand dynamometer in a sitting position, and GS was estimated by a 15-foot walk test at usual pace. RESULTS: Compared to participants in the first quartile, those in the second quartile of HGS had significantly lower odds of suffering from depressive symptoms, while GS was not significantly associated with depressive symptoms. A higher HGS was associated with a lower risk of moderate depressive symptoms, while a higher GS was related to a lower risk of moderately severe and severe symptoms. CONCLUSIONS: Our findings suggest that older people residing in Birjand, Iran with a moderate HGS are less likely to suffer from depressive symptoms than those with lower HGS.


Depression , Hand Strength , Independent Living , Walking Speed , Humans , Male , Aged , Female , Depression/epidemiology , Depression/psychology , Depression/physiopathology , Depression/diagnosis , Walking Speed/physiology , Hand Strength/physiology , Longitudinal Studies , Cross-Sectional Studies , Middle Aged , Iran/epidemiology , Aged, 80 and over , Aging/physiology , Aging/psychology
3.
Sci Rep ; 14(1): 9995, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693307

The aim of this study was to assess the causal relationship between habitual walking pace and cardiovascular disease risk using a Mendelian randomisation approach. We performed both one- and two-sample Mendelian randomisation analyses in a sample of 340,000 European ancestry participants from UK Biobank, applying a range of sensitivity analyses to assess pleiotropy and reverse causality. We used a latent variable framework throughout to model walking pace as a continuous exposure, despite being measured in discrete categories, which provided more robust and interpretable causal effect estimates. Using one-sample Mendelian randomisation, we estimated that a 1 mph (i.e., 1.6 kph) increase in self-reported habitual walking pace corresponds to a 63% (hazard ratio (HR) = 0.37, 95% confidence interval (CI), 0.25-0.55, P = 2.0 × 10-6) reduction in coronary artery disease risk. Using conditional analyses, we also estimated that the proportion of the total effect on coronary artery disease mediated through BMI was 45% (95% CI 16-70%). We further validated findings from UK Biobank using two-sample Mendelian randomisation with outcome data from the CARDIoGRAMplusC4D consortium. Our findings suggest that interventions that seek to encourage individuals to walk more briskly should lead to protective effects on cardiovascular disease risk.


Coronary Artery Disease , Mendelian Randomization Analysis , Self Report , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/epidemiology , Male , Female , Middle Aged , Mediation Analysis , Walking Speed , Aged , United Kingdom/epidemiology , Risk Factors
4.
Trials ; 25(1): 307, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715143

BACKGROUND: Aging has been associated with a progressive loss of skeletal muscle quality, quantity and strength, which may result in a condition known as sarcopenia, leading to a decline in physical performance, loss of independence and reduced quality of life. While the cause of impaired physical functioning observed in elderly populations appears to be multifactorial, recent evidence suggests that age-associated alterations in gut microbiota could be a contributing factor. The primary objective will be to assess the effects of a dietary synbiotic formulation on sarcopenia-related functional outcomes such as handgrip strength, gait speed and physical performance within older individuals living independently. The secondary objective will be to examine associations between changes in gut microbiota composition, functional performance and lean muscle mass. METHODS: Seventy-four elderly (60-85 years) participants will be randomized in a double-blind, placebo-controlled fashion to either an intervention or control group. The intervention group (n = 37) will receive oral synbiotic formulation daily for 16 weeks. The control group (n = 37) will receive placebo. Assessments of physical performance (including Short Physical Performance Battery, handgrip strength and timed up-and-go tests) and muscle ultrasonography will be performed at 4 time points (baseline and weeks 8, 16 and 20). Likewise, body composition via bioelectric impedance analysis and blood and stool samples will be collected at each time point. Dual-energy X-ray absorptiometry will be performed at baseline and week 16. The primary outcomes will be between-group changes in physical performance from baseline to 16 weeks. Secondary outcomes include changes in body composition, muscle mass and architecture, fecal microbiota composition and diversity, and fecal and plasma metabolomics. DISCUSSION: Gut-modulating supplements appear to be effective in modifying gut microbiota composition in healthy older adults. However, it is unclear whether these changes translate into functional and/or health improvements. In the present study, we will investigate the effects of a synbiotic formulation on measures of physical performance, strength and muscle health in healthy older populations. TRIAL REGISTRATION: This study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000652774) in May 2022.


Gastrointestinal Microbiome , Hand Strength , Muscle Strength , Muscle, Skeletal , Randomized Controlled Trials as Topic , Sarcopenia , Synbiotics , Humans , Double-Blind Method , Aged , Synbiotics/administration & dosage , Aged, 80 and over , Sarcopenia/physiopathology , Sarcopenia/prevention & control , Male , Middle Aged , Female , Australia , Physical Functional Performance , Dietary Supplements , Body Composition , Treatment Outcome , Walking Speed , Australasian People
5.
Clin Interv Aging ; 19: 737-744, 2024.
Article En | MEDLINE | ID: mdl-38736561

Purpose: Although both gait speed and fat mass are crucial for healthy aging, evidence suggests that the associations between these components remain unclear. Therefore, the main purpose of the study was to examine the associations between gait speed and fat mass. Patients and Methods: In this cross-sectional study, we recruited 643 older men and women aged >60 years. Fat mass was assessed using bioelectrical impedance analysis, while gait speed was determined by calculating the time an individual has taken to walk across a 4.6-m distance. Receiver operating characteristic (ROC) curves and odds ratios (OR) were performed to determine cut-off points and mutual associations. Results: In older men, the optimal threshold of gait speed to detect high level of fat mass was 1.40 m/s with the area under the curve (AUC) being 0.82 (95% CI 0.76-0.89, p < 0.001). In older women, the optimal cut-off point was 1.37 m/s (AUC = 0.85, 95% CI 0.81-0.90, p < 0.001). Older men and women who walked below the newly developed threshold were approximately 12 times more likely to have high level of fat. Conclusion: In summary, newly developed cut-off points of gait speed have adequate discriminatory ability to detect older men and women with high level of fat mass. Although gait speed may be considered as a satisfactory screening tool for fat mass, its utility in clinical practice needs to be further investigated.


ROC Curve , Walking Speed , Humans , Male , Female , Aged , Cross-Sectional Studies , Middle Aged , Electric Impedance , Body Mass Index , Aged, 80 and over , Odds Ratio , Area Under Curve , Adipose Tissue , Aging/physiology
6.
Int J Chron Obstruct Pulmon Dis ; 19: 995-1010, 2024.
Article En | MEDLINE | ID: mdl-38737191

Purpose: To present the preliminarily findings regarding the effects of a herbal medicine, Ninjin'yoeito, on comorbid frailty and sarcopenia in patients with chronic obstructive pulmonary disease (COPD). Patients and Methods: Patients with COPD (GOLD II or higher) and fatigue were randomly assigned to Group A (n = 28; no medication for 12 weeks, followed by 12-week administration) or B (n= 25; 24-week continuous administration). Visual analog scale (VAS) symptoms of fatigue, the COPD assessment test (CAT), and the modified Medical Research Council (mMRC) Dyspnea Scale were examined. Physical indices such asknee extension leg strength and walking speed, skeletal muscle mass index (SMI), and respiratory function test were also measured. Results: VAS fatigue scales in Group B significantly improved after 4, 8, and 12 weeks compared to those in Group A (each p<0.001, respectively). Right and left knee extension leg strength in Group B significantly improved after 12 weeks compared to that in Group A (p=0.042 and p=0.037, respectively). The 1-s walking speed for continued to increase significantly over 24 weeks in Group B (p=0.016, p<0.001, p<0.001, p=0.004, p<0.001, and p<0.001 after 4, 8, 12, 16, 20, and 24 weeks, respectively); it also significantly increased after the administration of Ninjin'yoeito in Group A. In Group B, the SMI significantly increased at 12 weeks in patients with sarcopenia (p=0.025). The CAT scores in Group B significantly improved after 12 weeks compared to those in Group A (p=0.006). The mMRC scores in Group B also significantly improved after 8 and 12 weeks compared to those in Group A (p= 0.045 and p <0.001, respectively). The changes in %FEV1.0 in Group B were significantly improved at 12 and 24 weeks (p=0.039 and p=0.036, respectively). Conclusion: Overall, Ninjin'yoeito significantly improved patients' quality of life, physical activity, muscle mass, and possibly lung function, suggesting that Ninjin'yoeito may improve frailty and sarcopenia in patients with COPD.


Drugs, Chinese Herbal , Exercise Tolerance , Frailty , Lung , Muscle Strength , Pulmonary Disease, Chronic Obstructive , Sarcopenia , Humans , Sarcopenia/physiopathology , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Sarcopenia/drug therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/complications , Male , Female , Aged , Treatment Outcome , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/adverse effects , Middle Aged , Muscle Strength/drug effects , Lung/physiopathology , Lung/drug effects , Time Factors , Exercise Tolerance/drug effects , Frailty/diagnosis , Frailty/physiopathology , Frailty/epidemiology , Comorbidity , Fatigue/physiopathology , Fatigue/drug therapy , Fatigue/diagnosis , Recovery of Function , Functional Status , Frail Elderly , Walking Speed
7.
Clin Nutr ESPEN ; 61: 333-337, 2024 Jun.
Article En | MEDLINE | ID: mdl-38777452

BACKGROUND & AIMS: Reduced skeletal muscle mass may negatively influence postural retention and walking function. This study aimed to examine the influence of the skeletal muscle mass index on walking function in patients with stroke. METHODS: This study included patients with cerebral infarction aged ≥65 years. The Asian Working Group for Sarcopenia's skeletal muscle mass index criteria were used to classify the participants into the low and high skeletal muscle mass index groups. The patient characteristics of the two groups were compared. The primary and secondary outcome measures were independent walking and walking speed, respectively. RESULTS: In total, 174 participants were included. There were no significant differences in the length of hospital stay, rehabilitation volume, or functional independence measure score at discharge between the males and females. Multivariate logistic regression analysis revealed that independent walking was independently associated with the skeletal muscle mass index on admission. The SMI, as an explanatory variable, was independently associated with the comfortable and fastest walking speeds. Faster walking was associated with higher skeletal muscle mass indexes on admission for both males and females. CONCLUSIONS: A low skeletal muscle mass index negatively influences walking function improvement in patients with stroke. A strategy aimed at increasing skeletal muscle mass can have beneficial effects on walking function in patients with stroke.


Muscle, Skeletal , Patient Discharge , Stroke Rehabilitation , Stroke , Walking , Humans , Male , Female , Aged , Walking/physiology , Muscle, Skeletal/physiopathology , Stroke/physiopathology , Sarcopenia/physiopathology , Aged, 80 and over , Walking Speed
8.
J Bodyw Mov Ther ; 38: 67-72, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763617

OBJECTIVE: To investigate the association between components of physical activity and spatiotemporal gait parameters in community-dwelling older adults. METHODS: Cross-sectional study with 134 independent community-dwelling older adults. A questionnaire was applied to obtain information related to the components of physical activity (frequency, duration, modality, and history of physical activity in the life course) and the GAITRite System was used to quantify gait parameters. Three MANOVA models adjusted for potential confounders were conducted to identify associations between components of physical activity (predictors) and gait performance (outcome). RESULTS: Higher weekly frequency but not daily hours of physical activity and sports practice (tennis, boxing, football, volleyball, and tai chi) were significantly associated with better gait performance, specifically gait speed and stride length. CONCLUSION: Understanding the most effective components of physical activity to maintain functional capacity and independence in community-dwelling older adults, allowing for active aging, is essential for formulating more effective strategies.


Exercise , Gait , Independent Living , Humans , Cross-Sectional Studies , Aged , Male , Female , Exercise/physiology , Gait/physiology , Aged, 80 and over , Sports/physiology , Walking Speed/physiology
10.
Nihon Ronen Igakkai Zasshi ; 61(1): 54-60, 2024.
Article Ja | MEDLINE | ID: mdl-38583971

AIM: This study aimed to verify whether working in cultivated land as a daily-life task contributes to the maintenance and improvement of physical and cognitive functions. METHODS: The participants were 91 elderly people of ≥65 years of age who owned cultivated land in the mountainous Koyadaira district in Tokushima Prefecture. Sex, age, body mass index (BMI), walking speed as a physical function, and the mini-mental status examination (MMSE) score as a cognitive function were measured and analyzed in addition to the total working hours per week (WH) in cultivated land. RESULTS: The participants were 31 males and 60 females (mean age 78.5±6.6 years). The average values of the evaluated variables were as follows: WH, 18.0±13.2; BMI, 23.4±3.0 kg/m2; walking speed, 0.95±0.28 m/s; and MMSE score, 26.6±3.1 points. In addition, the Mann-Whitney U test and the Chi-square test showed no significant differences between sexes for each item. A logistic regression analysis showed that WH was significantly associated with MMSE (1, ≥28 points; 0, <28 points), and the odds ratio was 1.054 (p=0.010) in the model adjusted for age and BMI, while it was not significantly associated with walking speed (1, ≥1 m/s; 0, <1 m/s). CONCLUSIONS: Working on small-scale cultivated land was significantly associated with the cognitive function but not the physical function. Routine work on small-scale cultivated land as a daily-life task would contribute to the suppression of cognitive decline in older people living in hilly and mountainous areas.


Cognition , Cognitive Dysfunction , Male , Female , Humans , Aged , Aged, 80 and over , Cognitive Dysfunction/diagnosis , Walking Speed , Body Mass Index , Geriatric Assessment
11.
J Neuroeng Rehabil ; 21(1): 44, 2024 04 02.
Article En | MEDLINE | ID: mdl-38566189

BACKGROUND: Tracking gait and balance impairment in time is paramount in the care of older neurological patients. The Minimal Detectable Change (MDC), built upon the Standard Error of the Measurement (SEM), is the smallest modification of a measure exceeding the measurement error. Here, a novel method based on linear mixed-effects models (LMMs) is applied to estimate the standard error of the measurement from data collected before and after rehabilitation and calculate the MDC of gait and balance measures. METHODS: One hundred nine older adults with a gait impairment due to neurological disease (66 stroke patients) completed two assessment sessions before and after inpatient rehabilitation. In each session, two trials of the 10-meter walking test and the Timed Up and Go (TUG) test, instrumented with inertial sensors, have been collected. The 95% MDC was calculated for the gait speed, TUG test duration (TTD) and other measures from the TUG test, including the angular velocity peak (ωpeak) in the TUG test's turning phase. Random intercepts and slopes LMMs with sessions as fixed effects were used to estimate SEM. LMMs assumptions (residuals normality and homoscedasticity) were checked, and the predictor variable ln-transformed if needed. RESULTS: The MDC of gait speed was 0.13 m/s. The TTD MDC, ln-transformed and then expressed as a percentage of the baseline value to meet LMMs' assumptions, was 15%, i.e. TTD should be < 85% of the baseline value to conclude the patient's improvement. ωpeak MDC, also ln-transformed and expressed as the baseline percentage change, was 25%. CONCLUSIONS: LMMs allowed calculating the MDC of gait and balance measures even if the test-retest steady-state assumption did not hold. The MDC of gait speed, TTD and ωpeak from the TUG test with an inertial sensor have been provided. These indices allow monitoring of the gait and balance impairment, which is central for patients with an increased falling risk, such as neurological old persons. TRIAL REGISTRATION: NA.


Nervous System Diseases , Stroke , Humans , Aged , Walking , Gait , Walking Speed , Stroke/complications , Reproducibility of Results , Postural Balance
12.
Sci Rep ; 14(1): 8427, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600145

Impaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.


Hand Strength , Renal Dialysis , Female , Humans , Male , Gait , Walking , Walking Speed
13.
BMC Neurol ; 24(1): 129, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38627674

BACKGROUND: Gait speed is often used to estimate the walking ability in daily life in people after stroke. While measuring gait with inertial measurement units (IMUs) during clinical assessment yields additional information, it remains unclear if this information can improve the estimation of the walking ability in daily life beyond gait speed. OBJECTIVE: We evaluated the additive value of IMU-based gait features over a simple gait-speed measurement in the estimation of walking ability in people after stroke. METHODS: Longitudinal data during clinical stroke rehabilitation were collected. The assessment consisted of two parts and was administered every three weeks. In the first part, participants walked for two minutes (2MWT) on a fourteen-meter path with three IMUs attached to low back and feet, from which multiple gait features, including gait speed, were calculated. The dimensionality of the corresponding gait features was reduced with a principal component analysis. In the second part, gait was measured for two consecutive days using one ankle-mounted IMU. Next, three measures of walking ability in daily life were calculated, including the number of steps per day, and the average and maximal gait speed. A gait-speed-only Linear Mixed Model was used to estimate the association between gait speed and each of the three measures of walking ability. Next, the principal components (PC), derived from the 2MWT, were added to the gait-speed-only model to evaluate if they were confounders or effect modifiers. RESULTS: Eighty-one participants were measured during rehabilitation, resulting in 198 2MWTs and 135 corresponding walking-performance measurements. 106 Gait features were reduced to nine PCs with 85.1% explained variance. The linear mixed models demonstrated that gait speed was weakly associated with the average and maximum gait speed in daily life and moderately associated with the number of steps per day. The PCs did not considerably improve the outcomes in comparison to the gait speed only models. CONCLUSIONS: Gait in people after stroke assessed in a clinical setting with IMUs differs from their walking ability in daily life. More research is needed to determine whether these discrepancies also occur in non-laboratory settings, and to identify additional non-gait factors that influence walking ability in daily life.


Stroke , Walking Speed , Humans , Gait , Walking , Lower Extremity
14.
BMC Geriatr ; 24(1): 358, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649830

BACKGROUND: Older people with hip fracture are often medically frail, and many do not regain their walking ability and level of physical activity. The aim of this study was to examine the relationship between pre-fracture recalled mobility, fear of falling, physical activity, walking habits and walking speed one year after hip fracture. METHODS: The study had a longitudinal design. Measurements were performed 3-5 days postoperatively (baseline) and at one year after the hip fracture. The measurements at baseline were all subjective outcome measures recalled from pre-fracture: The New Mobility Scale (NMS), the 'Walking Habits' questionnaire, The University of California, Los Angeles (UCLA) Activity Scale, Fear of Falling International (FES-I) and demographic variables. At one year 4-meter walking speed, which was a part of the Short Physical Performance Battery (SPPB) was assessed. RESULTS: At baseline 207 participants were included and 151 were assessed after one year. Their age was mean (SD) 82.7 (8.3) years (range 65-99 years). Those with the fastest walking speed at one year had a pre-fracture habit of regular walks with a duration of ≥ 30 min and/or a frequency of regular walks of 5-7 days a week. Age (p =.020), number of comorbidities (p <.001), recalled NMS (p <.001), and recalled UCLA Activity Scale (p =.007) were identified as predictors of walking speed at one year. The total model explained 54% of the variance in walking speed. CONCLUSIONS: Duration and frequency of regular walks before the hip fracture play a role in walking speed recovery one year following the fracture. Subjective outcome measures of mobility and physical activity, recalled from pre-fracture can predict walking speed at one year. They are gentle on the old and medically frail patients in the acute phase after hip fracture, as well as clinically less time consuming.


Exercise , Hip Fractures , Walking Speed , Humans , Hip Fractures/physiopathology , Hip Fractures/rehabilitation , Male , Aged , Female , Aged, 80 and over , Walking Speed/physiology , Exercise/physiology , Longitudinal Studies , Predictive Value of Tests , Time Factors , Walking/physiology , Geriatric Assessment/methods , Mobility Limitation , Accidental Falls/prevention & control
15.
Clin Biomech (Bristol, Avon) ; 114: 106236, 2024 Apr.
Article En | MEDLINE | ID: mdl-38564981

BACKGROUND: Obesity impacts a child's ability to walk with resulting biomechanical adaptations; however, existing research has not comprehensively compared differences across the gait cycle. We examined differences in lower extremity biomechanics across the gait cycle between children with and without obesity at three walking speeds. METHODS: Full gait cycles of age-matched children with obesity (N = 10; BMI: 25.7 ± 4.2 kg/m2) and without obesity (N = 10; BMI: 17.0 ± 1.9 kg/m2) were analyzed at slow, normal, and fast walking speeds. Main and interaction effects of group and speed across hip, knee, and ankle joint angles and moments in sagittal, frontal, and transverse planes were analyzed using one-dimensional statistical parametric mapping. FINDINGS: Compared to children without obesity, children with obesity had greater hip adduction during mid-stance, while also producing greater hip extensor moments during early stance phase, abductor moments throughout most of stance, and hip external rotator moments during late stance. Children with obesity recorded greater knee flexor, knee extensor and knee internal rotator moments during early stance, and knee external rotator moments in late stance than children without obesity; children with obesity also demonstrated greater ankle plantarflexor moments throughout mid and late stance. Interaction effects existed within joint kinetics data; children with obesity produced greater hip extensor moments at initial contact and toe-off when walking at fast compared to normal walking speed. INTERPRETATION: While few kinematic differences existed between the two groups, children with obesity exhibited greater moments at the hip, knee, and ankle during critical periods of controlling and stabilizing mass.


Pediatric Obesity , Walking Speed , Child , Humans , Gait , Walking , Knee Joint , Ankle Joint , Biomechanical Phenomena
16.
J Biomech ; 167: 112064, 2024 Apr.
Article En | MEDLINE | ID: mdl-38582005

Biomechanical time series may contain low-frequency trends due to factors like electromechanical drift, attentional drift and fatigue. Existing detrending procedures are predominantly conducted at the trial level, removing trends that exist over finite, adjacent time windows, but this fails to consider what we term 'cycle-level trends': trends that occur in cyclical movements like gait and that vary across the movement cycle, for example: positive and negative drifts in early and late gait phases, respectively. The purposes of this study were to describe cycle-level detrending and to investigate the frequencies with which cycle-level trends (i) exist, and (ii) statistically affect results. Anterioposterior ground reaction forces (GRF) from the 41-subject, 8-speed, open treadmill walking dataset of Fukuchi (2018) were analyzed. Of a total of 552 analyzed trials, significant cycle-level trends were found approximately three times more frequently (21.1%) than significant trial-level trends (7.4%). In statistical comparisons of adjacent walking speeds (i.e., speed 1 vs. 2, 2 vs. 3, etc.) just 3.3% of trials exhibited cycle-level trends that changed the null hypothesis rejection decision. However 17.6% of trials exhibited cycle-level trends that qualitatively changed the stance phase regions identified as significant. Although these results are preliminary and derived from just one dataset, results suggest that cycle-level trends can contribute to analysis bias, and therefore that cycle-level trends should be considered and/or removed where possible. Software implementing the proposed cycle-level detrending is available at https://github.com/0todd0000/detrend1d.


Gait , Walking , Walking Speed , Time Factors , Exercise Test , Biomechanical Phenomena
17.
J Biomech ; 167: 112076, 2024 Apr.
Article En | MEDLINE | ID: mdl-38583376

Given the known deficits in spatiotemporal aspects of gait for people with Parkinson's disease (PD), we sought to determine the underlying gait abnormalities in limb and joint kinetics, and examine how deficits in push-off and leg swing might contribute to the shortened step lengths for people with PD. Ten participants with PD and 11 age-matched control participants walked overground and on an instrumented treadmill. Participants with PD then walked on the treadmill with a posteriorly directed restraining force applied to 1) the pelvis to challenge push-off and 2) the ankles to challenge leg swing. Spatiotemporal, kinematic, and force data were collected and compared between groups and conditions. Despite group differences in spatiotemporal measures during overground walking, we did not observe these differences when the groups walked on a treadmill at comparable speeds. Nevertheless, the hip extension impulse appeared smaller in the PD group during their typical walking. When challenging limb propulsion, participants in the PD group maintained step lengths by increasing the propulsive impulse. Participants with PD were also able to maintain their typical step length against resistance intended to impede swing limb advancement, and even increased step lengths with cuing. The presence of reduced hip extension torque might be an early indicator of gait deterioration in this neurodegenerative disease. Our participants with PD were able to increase hip extension torque in response to needed demands. Additionally, participants with PD were able to increase limb propulsion and leg swing against resistance, suggesting a reserve in limb mechanics.


Neurodegenerative Diseases , Parkinson Disease , Humans , Walking/physiology , Gait/physiology , Leg/physiology , Biomechanical Phenomena , Walking Speed/physiology
18.
Sensors (Basel) ; 24(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38676007

This work presents a real-time gait phase estimator using thigh- and shank-mounted inertial measurement units (IMUs). A multi-rate convolutional neural network (CNN) was trained to estimate gait phase for a dataset of 16 participants walking on an instrumented treadmill with speeds varying between 0.1 to 1.9 m/s, and conditions such as asymmetric walking, stop-start, and sudden speed changes. One-subject-out cross-validation was used to assess the robustness of the estimator to the gait patterns of new individuals. The proposed model had a spatial root mean square error of 5.00±1.65%, and a temporal mean absolute error of 2.78±0.97% evaluated at the heel strike. A second cross-validation was performed to show that leaving out any of the walking conditions from the training dataset did not result in significant performance degradation. A 2-sample Kolmogorov-Smirnov test showed that there was no significant increase in spatial or temporal error when testing on the abnormal walking conditions left out of the training set. The results of the two cross-validations demonstrate that the proposed model generalizes well across new participants, various walking speeds, and gait patterns, showcasing its potential for use in investigating patient populations with pathological gaits and facilitating robot-assisted walking.


Gait , Neural Networks, Computer , Walking , Humans , Gait/physiology , Male , Walking/physiology , Adult , Female , Algorithms , Walking Speed/physiology , Young Adult
19.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38676068

Neurological disorders such as stroke, Parkinson's disease (PD), and severe traumatic brain injury (sTBI) are leading global causes of disability and mortality. This study aimed to assess the ability to walk of patients with sTBI, stroke, and PD, identifying the differences in dynamic postural stability, symmetry, and smoothness during various dynamic motor tasks. Sixty people with neurological disorders and 20 healthy participants were recruited. Inertial measurement unit (IMU) sensors were employed to measure spatiotemporal parameters and gait quality indices during different motor tasks. The Mini-BESTest, Berg Balance Scale, and Dynamic Gait Index Scoring were also used to evaluate balance and gait. People with stroke exhibited the most compromised biomechanical patterns, with lower walking speed, increased stride duration, and decreased stride frequency. They also showed higher upper body instability and greater variability in gait stability indices, as well as less gait symmetry and smoothness. PD and sTBI patients displayed significantly different temporal parameters and differences in stability parameters only at the pelvis level and in the smoothness index during both linear and curved paths. This study provides a biomechanical characterization of dynamic stability, symmetry, and smoothness in people with stroke, sTBI, and PD using an IMU-based ecological assessment.


Gait , Parkinson Disease , Postural Balance , Stroke , Humans , Male , Gait/physiology , Female , Middle Aged , Parkinson Disease/physiopathology , Postural Balance/physiology , Biomechanical Phenomena/physiology , Aged , Stroke/physiopathology , Walking/physiology , Adult , Brain Injuries, Traumatic/physiopathology , Walking Speed/physiology
...