Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.930
Filtrar
1.
Sci Rep ; 14(1): 15032, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951590

RESUMEN

In agriculture, hydrogels can be addressed for effective operation of water and controlled-release fertilizers. Hydrogels have a significant ability for retaining water and improving nutrient availability in soil, enhancing plant growth while reducing water and fertilizer usage. This work aimed to prepare a hydrogel composite based on microalgae and biopolymers including chitosan and starch for use as a soil conditioner. The hydrogel composite was characterized by FTIR, XRD, and SEM. All hydrogel properties were studied including swelling degree, biodegradability, water-holding capacity, water retention, and re-swelling capacity in soil and water. The urea fertilizer loading and releasing behavior of the prepared hydrogels were investigated. The results revealed that the range of the maximal urea loading was between 99 and 440%, and the kinetics of loading was fitted with Freundlich model. The urea release % exhibited 78-95%, after 30 days, and the kinetics of release was fitted with zero-order, Higuchi, and Korsmeyer-Peppas models. Furthermore, the prepared hydrogels obtained a significant water-holding capacity, after blending soil (50 g) with small amount of hydrogels (1 g), the capacity increased in the range of 99.4-101.5%. In sum, the prepared hydrogels have the potential to be applied as a soil conditioner.


Asunto(s)
Fertilizantes , Hidrogeles , Microalgas , Urea , Fertilizantes/análisis , Hidrogeles/química , Urea/química , Microalgas/química , Preparaciones de Acción Retardada/química , Cinética , Agua/química , Suelo/química , Quitosano/química , Almidón/química
2.
PLoS One ; 19(7): e0304373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959223

RESUMEN

Crystal type is an important physicochemical property of starch. However, it is currently unclear whether changes in crystal type affect other properties of starch. This study discovered that water deficit resulted in an increase in small starch granules and transparency in Pueraria lobata var. thomsonii, while causing a decrease in amylose content and swelling power. Additionally, the crystal type of P. Thomsonii starch changed from CB-type to CA-type under water deficit, without significantly altering the short-range ordered structure and chain length distribution of starch. This transformation in crystal type led to peak splitting in the DSC heat flow curve of starch, alterations in gelatinization behavior, and an increase in resistant starch content. These changes in crystalline structure and physicochemical properties of starch granules are considered as adaptive strategies employed by P. Thomsonii to cope with water deficit.


Asunto(s)
Amilosa , Pueraria , Almidón , Agua , Pueraria/química , Almidón/química , Agua/química , Amilosa/química , Amilosa/análisis , Cristalización , Difracción de Rayos X , Rastreo Diferencial de Calorimetría
3.
Anal Chim Acta ; 1316: 342861, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969410

RESUMEN

BACKGROUND: The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS: A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 µM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE: DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.


Asunto(s)
Cromo , Límite de Detección , Pirroles , Contaminantes Químicos del Agua , Cromo/análisis , Pirroles/química , Contaminantes Químicos del Agua/análisis , Cetonas/química , Cetonas/análisis , Agua/química
4.
Sci Data ; 11(1): 742, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972891

RESUMEN

We here introduce the Aquamarine (AQM) dataset, an extensive quantum-mechanical (QM) dataset that contains the structural and electronic information of 59,783 low-and high-energy conformers of 1,653 molecules with a total number of atoms ranging from 2 to 92 (mean: 50.9), and containing up to 54 (mean: 28.2) non-hydrogen atoms. To gain insights into the solvent effects as well as collective dispersion interactions for drug-like molecules, we have performed QM calculations supplemented with a treatment of many-body dispersion (MBD) interactions of structures and properties in the gas phase and implicit water. Thus, AQM contains over 40 global and local physicochemical properties (including ground-state and response properties) per conformer computed at the tightly converged PBE0+MBD level of theory for gas-phase molecules, whereas PBE0+MBD with the modified Poisson-Boltzmann (MPB) model of water was used for solvated molecules. By addressing both molecule-solvent and dispersion interactions, AQM dataset can serve as a challenging benchmark for state-of-the-art machine learning methods for property modeling and de novo generation of large (solvated) molecules with pharmaceutical and biological relevance.


Asunto(s)
Teoría Cuántica , Solventes , Solventes/química , Preparaciones Farmacéuticas/química , Agua/química , Conformación Molecular
5.
AAPS J ; 26(4): 78, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981948

RESUMEN

A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes.


Asunto(s)
Emulsiones , Espectroscopía de Resonancia Magnética , Aceites , Agua , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Aceites/química , Tensoactivos/química , Fluprednisolona/química , Fluprednisolona/análogos & derivados , Tamaño de la Partícula , Composición de Medicamentos/métodos , Nanopartículas/química , Química Farmacéutica/métodos
6.
PLoS One ; 19(7): e0306998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985791

RESUMEN

Infectious and foodborne diseases pose significant global threats, with devastating consequences in low- and middle-income countries. Ozone, derived from atmospheric oxygen, exerts antimicrobial effects against various microorganisms, and degrades fungal toxins, which were initially recognized in the healthcare and food industries. However, highly concentrated ozone gas can be detrimental to human health. In addition, ozonated water is unstable and has a short half-life. Therefore, ultrafine-bubble technology is expected to overcome these issues. Ultrafine bubbles, which are nanoscale entitles that exist in water for considerable durations, have previously demonstrated bactericidal effects against various bacterial species, including antibiotic-resistant strains. This present study investigated the effects of ozone ultrafine bubble water (OUFBW) on various bacterial toxins. This study revealed that OUFBW treatment abolished the toxicity of pneumolysin, a pneumococcal pore-forming toxin, and leukotoxin, a toxin that causes leukocyte injury. Silver staining confirmed the degradation of pneumolysin, leukotoxin, and staphylococcal enterotoxin A, which are potent gastrointestinal toxins, following OUFB treatment. In addition, OUFBW treatment significantly inhibited NF-κB activation by Pam3CSK4, a synthetic triacylated lipopeptide that activates Toll-like receptor 2. Additionally, OUFBW exerted bactericidal activity against Staphylococcus aureus, including an antibiotic-resistant strain, without displaying significant toxicity toward human neutrophils or erythrocytes. These results suggest that OUFBW not only sterilizes bacteria but also degrades bacterial toxins.


Asunto(s)
Toxinas Bacterianas , Ozono , Ozono/química , Ozono/farmacología , Humanos , Toxinas Bacterianas/metabolismo , Agua/química , FN-kappa B/metabolismo , Proteínas Bacterianas/metabolismo
7.
Sci Adv ; 10(28): eadl3591, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985863

RESUMEN

The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.


Asunto(s)
Carbohidratos , Hidrógeno , Hojas de la Planta , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hidrógeno/análisis , Carbohidratos/química , Carbohidratos/análisis , Almidón/química , Nicotiana/química , Lípidos/análisis , Lípidos/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Metabolismo de los Hidratos de Carbono , Deuterio/química , Alcanos/análisis , Alcanos/química , Agua/química
8.
J Mass Spectrom ; 59(8): e5070, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38989742

RESUMEN

Recently, our group has shown that fentanyl and many of its analogues form prototropic isomers ("protomers") during electrospray ionization. These different protomers can be resolved using ion mobility spectrometry and annotated using mobility-aligned tandem mass spectrometry fragmentation. However, their formation and the extent to which experimental variables contribute to their relative ratio remain poorly understood. In the present study, we systematically investigated the effects of mixtures of common chromatographic solvents (water, methanol, and acetonitrile) and pH on the ratio of previously observed protomers for 23 fentanyl analogues. Interestingly, these ratios (N-piperidine protonation vs. secondary amine/O = protonation) decreased significantly for many analogues (e.g., despropionyl ortho-, meta-, and para-methyl fentanyl), increased significantly for others (e.g., cis-isofentanyl), and remained relatively constant for the others as solvent conditions changed from 100% organic solvent (methanol or acetonitrile) to 100% water. Interestingly, pH also had significant effects on this ratio, causing the change in ratio to switch in many cases. Lastly, increasing conditions to pH ≥ 4.0 also prompted the appearance of new mobility peaks for ortho- and para-methyl acetyl fentanyl, where all previous studies had only showed one single distribution. Because these ratios have promise to be used qualitatively for identification of these (and emerging) fentanyl analogues, understanding how various conditions (i.e., mobile phase selection and/or chromatographic gradient) affect their ratios is critically important to the development of advanced ion mobility and mass spectrometry methodologies to identify fentanyl analogues.


Asunto(s)
Fentanilo , Espectrometría de Movilidad Iónica , Solventes , Fentanilo/análogos & derivados , Fentanilo/química , Fentanilo/análisis , Solventes/química , Espectrometría de Movilidad Iónica/métodos , Concentración de Iones de Hidrógeno , Espectrometría de Masa por Ionización de Electrospray/métodos , Isomerismo , Metanol/química , Acetonitrilos/química , Espectrometría de Masas en Tándem/métodos , Agua/química
9.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000514

RESUMEN

The peculiar behavior of arsenoplatin-1, ([Pt(µ-NHC(CH3)O)2ClAs(OH)2], AP-1), in aqueous solution and the progressive appearance of a characteristic and intense blue color led us to carry out a more extensive investigation to determine the nature of this elusive chemical species, which we named "AsPt blue". A multi-technique approach was therefore implemented to describe the processes involved in the formation of AsPt blue, and some characteristic features of this intriguing species were revealed.


Asunto(s)
Oxidación-Reducción , Agua/química , Soluciones , Compuestos Organoplatinos/química
10.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39000818

RESUMEN

BACKGROUND: the feasibility of the capacitance method for detecting the water content in standing tree trunks was investigated using capacitance-based equipment that was designed for measuring the water content of standing tree trunks. METHODS: In laboratory experiments, the best insertion depth of the probe for standing wood was determined by measurement experiments conducted at various depths. The bark was to be peeled when specimens and standing wood were being measured. The actual water content of the test object was obtained by specimens being weighed and the standing wood being weighed after the wood core was extracted. RESULTS: A forecast of the moisture content of standing wood within a range of 0 to 180% was achieved by the measuring instrument. The feasibility of the device for basswood and fir trees is preliminarily studied. When compared to the drying method, the average error of the test results was found to be less than 8%, with basswood at 7.75%, and fir at 7.35%. CONCLUSIONS: It was concluded that the measuring instrument has a wide measuring range and is suitable for measuring wood with low moisture content, as well as standing timber with high moisture content. The measuring instrument, being small in size, easy to carry, and capable of switching modes, is considered to have a good application prospect in the field of forest precision monitoring and quality improvement.


Asunto(s)
Capacidad Eléctrica , Árboles , Agua , Madera , Agua/química , Madera/química
11.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000873

RESUMEN

Precise soil water content (SWC) measurement is crucial for effective water resource management. This study utilizes the Cosmic-Ray Neutron Sensor (CRNS) for area-averaged SWC measurements, emphasizing the need to consider all hydrogen sources, including time-variable plant biomass and water content. Near Mead, Nebraska, three field sites (CSP1, CSP2, and CSP3) growing a maize-soybean rotation were monitored for 5 (CSP1 and CSP2) and 13 (CSP3) years. Data collection included destructive biomass water equivalent (BWE) biweekly sampling, epithermal neutron counts, atmospheric meteorological variables, and point-scale SWC from a sparse time domain reflectometry (TDR) network (four locations and five depths). In 2023, dense gravimetric SWC surveys were collected eight (CSP1 and CSP2) and nine (CSP3) times over the growing season (April to October). The N0 parameter exhibited a linear relationship with BWE, suggesting that a straightforward vegetation correction factor may be suitable (fb). Results from the 2023 gravimetric surveys and long-term TDR data indicated a neutron count rate reduction of about 1% for every 1 kg m-2 (or mm of water) increase in BWE. This reduction factor aligns with existing shorter-term row crop studies but nearly doubles the value previously reported for forests. This long-term study contributes insights into the vegetation correction factor for CRNS, helping resolve a long-standing issue within the CRNS community.


Asunto(s)
Biomasa , Glycine max , Neutrones , Suelo , Agua , Zea mays , Zea mays/química , Nebraska , Agua/química , Suelo/química , Agricultura/métodos
12.
J Sep Sci ; 47(13): e2400234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005007

RESUMEN

In this study, we employed a combination approach for the preparative separation of constituents from Ginkgo biloba L. leaves. It involved multi-stage solvent extractions utilizing two-phase multi-solvent systems and countercurrent chromatography (CCC) separations using three different solvent systems. The n-heptane/ethyl acetate/water (1:1:2, v/v) and n-heptane/ethyl acetate/methanol/water (HepEMWat, 7:3:7:3, v/v) solvent systems were screened out as extraction systems. The polarities of the upper and lower phases in the multi-solvent systems were adjustable, enabling the effectively segmented separation of complex constituents in G. biloba L. The segmented products were subsequently directly utilized as samples and separated using CCC with the solvent systems acetate/n-butanol/water (4:1:5, v/v), HepEMWat (5:5:5:5, v/v), and HepEMWat (9:1:9:1, v/v), respectively. As a result, a total of 11 compounds were successfully isolated and identified from a 2 g methanol extract of G. biloba L through two-stage extraction and three CCC separation processes; among them, nine compounds exhibited high-performance liquid chromatography purity exceeding 85%.


Asunto(s)
Distribución en Contracorriente , Ginkgo biloba , Extractos Vegetales , Hojas de la Planta , Solventes , Ginkgo biloba/química , Solventes/química , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Agua/química , Metanol/química , Acetatos/química , Extracto de Ginkgo
13.
J Med Chem ; 67(13): 11138-11151, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38951717

RESUMEN

Using a multigram-scalable synthesis, we obtained nine dinuclear complexes based on nonendogenous iron(I) centers and featuring variable aminocarbyne and P-ligands. One compound from the series (FEACYP) emerged for its strong cytotoxicity in vitro against four human cancer cell lines, surpassing the activity of cisplatin by 3-6 times in three cell lines, with an average selectivity index of 6.2 compared to noncancerous HEK293 cells. FEACYP demonstrated outstanding water solubility (15 g/L) and stability in physiological-like solutions. It confirmed its superior antiproliferative activity when tested in 3D spheroids of human pancreatic cancer cells and showed a capacity to inhibit thioredoxin reductase (TrxR) similar to auranofin. In vivo treatment of murine LLC carcinoma with FEACYP (8 mg kg-1 dose) led to excellent tumor growth suppression (88%) on day 15, with no signs of systemic toxicity and only limited body weight loss.


Asunto(s)
Adamantano , Antineoplásicos , Solubilidad , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Adamantano/farmacología , Adamantano/análogos & derivados , Adamantano/química , Adamantano/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Hierro/química , Hierro/metabolismo , Agua/química , Ensayos de Selección de Medicamentos Antitumorales , Fosfinas/química , Fosfinas/farmacología , Estabilidad de Medicamentos , Células HEK293 , Compuestos Organofosforados
14.
Planta ; 260(2): 40, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954049

RESUMEN

MAIN CONCLUSION: Rainwater most probably constitutes a relatively effective solvent for lichen substances in nature which have the potential to provide for human and environmental needs in the future. The aims were (i) to test the hypothesis on the potential solubility of lichen phenolic compounds using rainwater under conditions that partly reflect the natural environment and (ii) to propose new and effective methods for the water extraction of lichen substances. The results of spectrophotometric analyses of total phenolic metabolites in rainwater-based extracts from epigeic and epiphytic lichens, employing the Folin-Ciocalteu (F.-C.) method, are presented. The water solvent was tested at three pH levels: natural, 3, and 9. Extraction methods were undertaken from two perspectives: the partial imitation of natural environmental conditions and the potential use of extraction for economic purposes. From an ecological perspective, room-temperature water extraction ('cold' method) was used for 10-, 60-, and 120-min extraction periods. A variant of water extraction at analogous time intervals was an 'insolation' with a 100W light bulb to simulate the heat energy of the sun. For economic purposes, the water extraction method used the Soxhlet apparatus and its modified version, the 'tea-extraction' method ('hot' ones). The results showed that those extractions without an external heat source were almost ineffective, but insolation over 60- and 120-min periods proved to be more effective. Both tested 'hot' methods also proved to be effective, especially the 'tea-extraction' one. Generally, an increase in the concentration of phenolic compounds in water extracts resulted from an increasing solvent pH. The results show the probable involvement of lichen substances in biogeochemical processes in nature and their promising use for a variety of human necessities.


Asunto(s)
Líquenes , Fenoles , Solubilidad , Espectrofotometría , Agua , Líquenes/química , Líquenes/metabolismo , Fenoles/metabolismo , Fenoles/análisis , Agua/química , Solventes/química , Concentración de Iones de Hidrógeno , Lluvia/química
15.
PLoS One ; 19(7): e0306418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39042616

RESUMEN

The polycyclic aromatic hydrocarbon content of water (four surface water, six underground water (borehole water), seven sachet water), barbecued food and their fresh equivalents (barbecued beef, fish, plantain, pork, yam, chicken, chevon, potato, corn), oil (three palm oil, nine vegetable oil), and fresh vegetable samples (water leaf, bitter leaf, cabbage, carrot, cucumber, pumpkin, garlic, ginger, green leaf, Gnetum Africana, onion, pepper) were determined by GC-MS analysis. The current study also determined the estimated lifetime cancer risk from ingesting polycyclic aromatic hydrocarbon-contaminated food. The polycyclic aromatic hydrocarbon content of water, oil, vegetable, and food samples were within the United States Environmental Protection Agency/World Health Organization safe limits. The naphthalene, benzo(b)fluoranthene, and benzo(k)fluoranthene levels in surface water were significantly higher than in borehole samples (P = 0.000, 0.047, 0.047). Vegetable oils had higher anthracene and chrysene compared to palm oil (P = 0.023 and 0.032). Significant variations were observed in levels of naphthalene, acenaphthylene, phenanthrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene among the barbecued and fresh food samples (P <0.05). Barbecued pork, potato, and corn had significantly higher naphthalene compared to their fresh equivalents (P = 0.002, 0.017, and <0.001). Consumption of barbecued food and surface water may be associated with higher exposure risk to polycyclic aromatic hydrocarbons which may predispose to increased cancer health risk. The current work explores in depth the concentration of polycyclic aromatic hydrocarbons in different dietary categories that pose direct risk to humans via direct consumption. These findings add knowledge to support future considerations for human health.


Asunto(s)
Neoplasias , Hidrocarburos Policíclicos Aromáticos , Verduras , Nigeria , Hidrocarburos Policíclicos Aromáticos/análisis , Verduras/química , Humanos , Medición de Riesgo , Neoplasias/epidemiología , Neoplasias/etiología , Contaminación de Alimentos/análisis , Agua/química , Agua/análisis , Cromatografía de Gases y Espectrometría de Masas , Crisenos/análisis , Fenantrenos/análisis , Análisis de los Alimentos , Contaminantes Químicos del Agua/análisis , Animales , Antracenos , Naftalenos
16.
PLoS One ; 19(7): e0307565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39042658

RESUMEN

This manuscript investigates bifurcation, chaos, and stability analysis for a significant model in the research of shallow water waves, known as the second 3D fractional Wazwaz-Benjamin-Bona-Mahony (WBBM) model. The dynamical system for the above-mentioned nonlinear structure is obtained by employing the Galilean transformation to fulfill the research objectives. Subsequent analysis includes planar dynamic systems techniques to investigate bifurcations, chaos, and sensitivities within the model. Our findings reveal diverse features, including quasi-periodic, periodic, and chaotic motion within the governing nonlinear problem. Additionally, diverse soliton structures, like bright solitons, dark solitons, kink waves, and anti-kink waves, are thoroughly explored through visual illustrations. Interestingly, our results highlight the importance of chaos analysis in understanding complex system dynamics, prediction, and stability. Our techniques' efficiency, conciseness, and effectiveness advance our understanding of this model and suggest broader applications for exploring nonlinear systems. In addition to improving our understanding of shallow water nonlinear dynamics, including waveform features, bifurcation analysis, sensitivity, and stability, this study reveals insights into dynamic properties and wave patterns.


Asunto(s)
Dinámicas no Lineales , Modelos Teóricos , Agua/química , Movimientos del Agua , Algoritmos
17.
Proc Natl Acad Sci U S A ; 121(31): e2321396121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042686

RESUMEN

The evolution of complex chemical inventory from Darwin's nutrient-rich warm pond necessitated rudimentary yet efficient catalytic folds. Short peptides and their self-organized microstructures, ranging from spherical colloids to amyloidogenic aggregates might have played a crucial role in the emergence of contemporary catalytic entities. However, the question of how short peptide fragments had functions akin to contemporary complex enzymes to catalyze cleavage and formation of highly stable peptide bonds that constitute the backbone of all proteins remains an unresolved yet fundamentally important question in terms of the origins of enzymes. We report short-peptide-based spherical assemblies that demonstrated residue-specific cleavage and formation of peptide bonds of diverse peptide-based substrates under aqueous environment. Despite the short sequence length, the assemblies utilized the synergistic collaboration of four residues which included the catalytic triad of extant serine proteases with a nonproteinogenic amino acid (quinone moiety), to facilitate proteolysis, ligation, and a three-step (hydrolysis-ligation-hydrolysis) cascade. Such short-peptide-based catalytic assemblies argue for their candidacy as the earliest protein folds and open up avenues for biotechnological applications.


Asunto(s)
Péptidos , Agua , Hidrólisis , Péptidos/química , Péptidos/metabolismo , Agua/química , Proteolisis , Catálisis
18.
Luminescence ; 39(7): e4821, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39043610

RESUMEN

MoO3 thin film was fabricated on an indium tin oxide substrate using the physical vapor deposition technique. X-ray diffraction and scanning electron microscopy study to investigate surface morphology, grain size, and surface structure, which are critical for absorbing solar spectra in water splitting for hydrogen energy generation. Ultraviolet-visible spectroscopy was used to confirm the absorption of solar spectra and the percentage of transmittance. Fourier-transform infrared analysis provided the functional groups present in the deposited thin film. The Tauc plot was used to determine the thin-film band gap, which allowed for the analysis of charge carrier transitions from the conduction band to the valence band. Electrochemical impedance spectroscopy investigations confirmed the charge transfer processes to the counter electrode and electrolyte interfaces. The observed low curve for MoO3 indicated low resistance and allowed efficient charge transfer. Linear sweep voltammetry analysis was used to measure photocurrent and solar light to hydrogen emission when the thin film was exposed to solar spectra. The thin film's observed hydrogen emission rate was 3731.74 mol g-1 h-1, and the STH% of MoO3 was found to be 0.345% at 0.8 V. These findings highlight the promising potential of MoO3 as a material for hydrogen energy generation using solar light.


Asunto(s)
Electrodos , Hidrógeno , Molibdeno , Óxidos , Agua , Hidrógeno/química , Agua/química , Óxidos/química , Molibdeno/química , Propiedades de Superficie , Procesos Fotoquímicos , Técnicas Electroquímicas , Compuestos de Estaño/química , Tamaño de la Partícula
19.
J Agric Food Chem ; 72(29): 16438-16448, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38981019

RESUMEN

Steviol glycosides (SGs) are a natural sweetener widely used in the food and beverage industry, but the low solubility and stability of SG aqueous solutions greatly limit their application performance, especially in liquid formulations. In this work, we explore the solubility behavior of rebaudioside A (Reb A) in water, a major component of SGs, with the aim of clarifying the underlying mechanisms of the solubility and stability constraints of SGs, as well as the impact on their multifunctional properties. We demonstrate for the first time that Reb A exhibits hierarchical self-assembly in solutions, forming spherical micelles first when the concentration exceeds its critical micelle concentration (5.071 mg/mL), which then further assemble into large rod-like aggregates. The formation of such large Reb A aggregates is mainly dominated by hydrogen bonding and short-range Coulomb interaction energy, thus leading to the low solubility and precipitation of Reb A solutions. Surprisingly, aggregated Reb A structures display significantly improved organoleptic properties, revealing that self-aggregation can be developed as a simple, efficient, and green strategy for improving the taste profile of SGs. Additionally, the self-aggregation of Reb A at high concentrations impairs active encapsulation and also affects its interfacial and emulsifying properties.


Asunto(s)
Diterpenos de Tipo Kaurano , Glicósidos , Solubilidad , Edulcorantes , Diterpenos de Tipo Kaurano/química , Edulcorantes/química , Glicósidos/química , Agua/química , Micelas , Enlace de Hidrógeno , Gusto , Glucósidos/química , Stevia/química , Soluciones/química
20.
J Am Chem Soc ; 146(29): 19818-19827, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38991220

RESUMEN

Proton translocation through lipid membranes is a fundamental process in the field of biology. Several theoretical models have been developed and presented over the years to explain the phenomenon, yet the exact mechanism is still not well understood. Here, we show that proton translocation is directly related to membrane potential fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we report apparently universal transmembrane potential fluctuations in lipid membrane systems. Molecular simulations and free energy calculations suggest that H+ permeation proceeds predominantly across a thin, membrane-spanning water needle and that the transient transmembrane potential drives H+ ions across the water needle. This mechanism differs from the transport of other cations that require completely open pores for transport and follows naturally from the well-known Grotthuss mechanism for proton transport in bulk water. Furthermore, SH imaging and conductivity measurements reveal that the rate of proton transport depends on the structure of the hydrophobic core of bilayer membranes.


Asunto(s)
Membrana Dobles de Lípidos , Protones , Agua , Agua/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA