Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.590
1.
Environ Monit Assess ; 196(6): 566, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775858

Microbial communities from freshwater sediments are involved in biogeochemical cycles and they can be modified by physical and chemical changes in the environment. Linking the microbial community structure (MCS) with physicochemistry of freshwater courses allows a better understanding of its ecology and can be useful to assess the ecological impact generated by human activity. The MCS of tributary channels from La Plata River affected by oil refinery (C, D, and E) and one also by urban discharges (C) was studied. For this purpose, 16S rRNA metabarcoding analysis, in silico metagenome functional prediction, and the hydrocarbon degradation potential (in silico predictions of hydrocarbon-degrading genes and their quantification by qPCR) of the MCS were studied. Principal coordinate analysis revealed that the MCS was different between sites, and it was not structured by the hydrocarbon content. Site C showed physicochemical characteristics, bacterial taxa, and an in silico functional prediction related to fermentative/heterotrophic metabolism. Site D, despite having higher concentration of hydrocarbon, presented autotrophic, syntrophic, and methanogenic pathways commonly involved in natural processes in anoxic sediments. Site E showed and intermediate autotrophic/heterotrophic behavior. The hydrocarbon degradation potential showed no positive correlation between the hydrocarbon-degrading genes quantified and predicted. The results suggest that the hydrocarbon concentration in the sites was not enough selection pressure to structure the bacterial community composition. Understanding which is the variable that structures the bacterial community composition is essential for monitoring and designing of sustainable management strategies for contaminated freshwater ecosystems.


Environmental Monitoring , Microbiota , Rivers , Water Pollutants, Chemical , Rivers/microbiology , Rivers/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Argentina , RNA, Ribosomal, 16S/genetics , Biodegradation, Environmental , Hydrocarbons/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Environmental Restoration and Remediation/methods
2.
J Environ Manage ; 359: 121013, 2024 May.
Article En | MEDLINE | ID: mdl-38723495

Aquaculture pond sediments have a notable influence on the ecosystem balance and farmed animal health. In this study, microalgal-bacterial immobilization (MBI) was designed to improve aquaculture pond sediments via synergistic interactions. The physicochemical characteristics, bacterial communities, and the removal efficiencies of emerging pollutants were systematically investigated. The consortium containing diatom Navicula seminulum and Alcaligenes faecalis was cultivated and established in the free and immobilized forms for evaluating the treatment performance. The results indicated that the immobilized group exhibited superior performance in controlling nutrient pollutants, shaping and optimizing the bacterial community compositions with the enrichment of functional bacteria. Additionally, it showed a stronger positive correlation between the bacterial community shifts and nutrient pollutants removal compared to free cells. Furthermore, the immobilized system maintained the higher removal performance of emerging pollutants (heavy metals, antibiotics, and pathogenic Vibrios) than free group. These findings confirmed that the employment of immobilized N. seminulum and A. faecalis produced more synergistic benefits and exerted more improvements than free cells in ameliorating aquaculture pond sediments, suggesting the potential for engineering application of functional microalgal-bacterial consortium in aquaculture.


Aquaculture , Microalgae , Ponds , Microalgae/metabolism , Geologic Sediments/microbiology , Metals, Heavy , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Animals
3.
Environ Monit Assess ; 196(6): 541, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735978

Metal pollution in water, soil, and vegetation is an emerging environmental issue. Therefore, this study investigated the abundance of heavy metals (HMs) within roots and shoots of native plant species i.e., Bromus pectinatus, Cynodon dactylon, Poa annua, Euphorbia heliscopa, Anagallis arvensis, and Stellaria media grown in the adjoining area of municipal wastewater channels of a Pakistani city of Abbottabad. HMs concentrations (mg L-1) in municipal wastewater were: chromium (Cr) (0.55) > nickel (Ni) (0.09) > lead (Pb) (0.07) > cadmium (Cd) (0.03). Accumulation of HMs in both roots and shoots of plant species varied as B. pectinatus > C. dactylon > P. annua > E. heliscopa > A. arvensis > S. media. Irrespective of the plant species, roots exhibited higher concentrations of HMs than shoots. Higher amount of Cr (131.70 mg kg-1) was detected in the roots of B. pectinatus and the lowest amount (81 mg kg-1) in A. arvensis, Highest Cd concentration was found in the shoot of B. pectinatus and the lowest in the E. heliscopa. The highest concentration of Ni was found in the roots of S. media (37.40 mg kg-1) and the shoot of C. dactylon (15.70 mg kg-1) whereas the lowest Ni concentration was achieved in the roots of A. arvensis (12.10 mg kg-1) and the shoot of E. heliscopa (5.90 mg kg-1). The concentration of HMs in individual plant species was less than 1000 mg kg-1. Considering the higher values (> 1) of biological concentration factor (BCF), biological accumulation co-efficient (BAC), and translocation factor (TF), B. pectinatus and S. media species showed greater potential for HMs accumulation than other species. Therefore, these plants might be helpful for the remediation of HM-contaminated soil.


Environmental Monitoring , Metals, Heavy , Plant Roots , Soil Pollutants , Wastewater , Water Pollutants, Chemical , Metals, Heavy/metabolism , Wastewater/chemistry , Plant Roots/metabolism , Water Pollutants, Chemical/metabolism , Pakistan , Soil Pollutants/metabolism , Plant Shoots/metabolism , Plants/metabolism
4.
Environ Monit Assess ; 196(6): 496, 2024 May 02.
Article En | MEDLINE | ID: mdl-38693437

This study examined the presence of two heavy metals (Cd and Pb) in the sediments and Asian swamp eels (Monopterus albus) in the downstream area of Cisadane River. The average concentrations of Cd and Pb in the sediments from all sampling locations were 0.594 ± 0.230 mg/kg and 34.677 ± 24.406 mg/kg, respectively. These concentrations were above the natural background concentration and the recommended value of interim sediment quality guidelines (ISQG), suggesting an enrichment process and potential ecological risk of studied metals to the ecosystem of Cisadane River. The increase in contamination within this region may be attributed to point sources such as landfill areas, as well as the industrial and agricultural land activities in surrounding area, and experienced an increasing level leading towards the estuary of Cisadane River. Meanwhile, the average concentrations of Cd and Pb in the eels from all sampling locations were 0.775 ± 0.528 µg/g and 28.940 ± 12.921 µg/g, respectively. This study also discovered that gill tissues contained higher levels of Cd and Pb than the digestive organ and flesh of Asian swamp eels. These concentrations were higher than Indonesian and international standards, suggesting a potential human health risk and therefore the needs of limitations in the consumption of the eels. Based on the human health risk assessment, the eels from the downstream of Cisadane River are still considered safe to be consumed as long as they comply with the specified maximum consumption limits.


Cadmium , Environmental Monitoring , Geologic Sediments , Lead , Rivers , Smegmamorpha , Water Pollutants, Chemical , Animals , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Rivers/chemistry , Indonesia , Cadmium/analysis , Lead/analysis , Lead/metabolism , Smegmamorpha/metabolism
5.
Environ Geochem Health ; 46(6): 187, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696018

The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.014 to 5.193 µg/L, Ni ranged from 0.283 to 11.133 µg/L, As ranged from 0.503 to 1.519 µg/L, Cd from 0.001 to 0.616 µg/L, and Pb ranged from non-detectable (ND) to 6.103 µg/L. The concentrations of TEs in sediment were found to vary within the following ranges: 5.259 to 32.621 mg/kg for Cr, 1.932 to 30.487 mg/kg for Ni, 0.129 to 0.563 mg/kg for As, 0.003 to 0.011 mg/kg for Cd, ND to 0.003 mg/kg for Hg, and 0.404 to 1.575 mg/kg for Pb. The study found that the accumulation pattern of TE in fishes across all selected areas was liver > bone > gill > muscle. The organs had TE concentrations of Cr (ND-0.769 mg/kg), Ni (ND-1.053 mg/kg), As (0.002-0.080 mg/kg), Pb (ND-0.411 mg/kg), and Hg (ND-0.067 mg/kg), which was below the maximum residual limit prescribed by EC and FSSAI. The bioconcentration factor (BCF) of TEs exhibited a greater magnitude in comparison with the biota-sediment accumulation factor due to the higher concentration of TEs in fish and lower level in water. The assessment of both carcinogenic and non-carcinogenic risks suggests that the consumption of Tilapia from the study region does not pose any significant risks.


Bioaccumulation , Geologic Sediments , Tilapia , Trace Elements , Water Pollutants, Chemical , Animals , Tilapia/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Risk Assessment , Geologic Sediments/chemistry , Trace Elements/analysis , Trace Elements/metabolism , India , Environmental Monitoring , Metals, Heavy/analysis , Humans , Fresh Water
6.
Sci Rep ; 14(1): 9972, 2024 04 30.
Article En | MEDLINE | ID: mdl-38693342

This study presents a novel biosorbent developed by immobilizing dead Sp2b bacterial biomass into calcium alginate (CASp2b) to efficiently remove arsenic (AsIII) from contaminated water. The bacterium Sp2b was isolated from arsenic-contaminated industrial soil of Punjab, a state in India. The strain was designated Acinetobacter sp. strain Sp2b as per the 16S rDNA sequencing, GenBank accession number -OP010048.The CASp2b was used for the biosorption studies after an initial screening for the biosorption capacity of Sp2b biomass with immobilized biomass in both live and dead states. The optimum biosorption conditions were examined in batch experimentations with contact time, pH, biomass, temperature, and AsIII concentration variables. The maximum biosorption capacity (qmax = 20.1 ± 0.76 mg/g of CA Sp2b) was obtained at pH9, 35 ̊ C, 20 min contact time, and 120 rpm agitation speed. The isotherm, kinetic and thermodynamic modeling of the experimental data favored Freundlich isotherm (R2 = 0.941) and pseudo-2nd-order kinetics (R2 = 0.968) with endothermic nature (ΔH° = 27.42) and high randomness (ΔS° = 58.1).The scanning electron microscopy with energy dispersive X-ray (SEM-EDX) analysis indicated the As surface binding. The reusability study revealed the reasonable usage of beads up to 5 cycles. In conclusion, CASp2b is a promising, efficient, eco-friendly biosorbent for AsIII removal from contaminated water.


Acinetobacter , Alginates , Arsenic , Biodegradation, Environmental , Biomass , Water Pollutants, Chemical , Alginates/chemistry , Alginates/metabolism , Acinetobacter/metabolism , Acinetobacter/genetics , Arsenic/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Purification/methods , Temperature , Thermodynamics
7.
J Hazard Mater ; 471: 134451, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38691935

Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.


Ferrous Compounds , Nitrobenzenes , Anaerobiosis , Nitrobenzenes/metabolism , Nitrobenzenes/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Wastewater/chemistry , Bioreactors
8.
PeerJ ; 12: e17328, 2024.
Article En | MEDLINE | ID: mdl-38770094

Nanotechnology and nanoparticles have gained massive attention in the scientific community in recent years due to their valuable properties. Among various AgNPs synthesis methods, microbial approaches offer distinct advantages in terms of cost-effectiveness, biocompatibility, and eco-friendliness. In the present research work, investigators have synthesized three different types of silver nanoparticles (AgNPs), namely AgNPs-K, AgNPs-M, and AgNPs-E, by using Klebsiella pneumoniae (MBC34), Micrococcus luteus (MBC23), and Enterobacter aerogenes (MBX6), respectively. The morphological, chemical, and elemental features of the synthesized AgNPs were analyzed by using UV-Vis spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDX). UV-Vis absorbance peaks were obtained at 475, 428, and 503 nm for AgNPs-K, AgNPs-M, and AgNPs-E, respectively. The XRD analysis confirmed the crystalline nature of the synthesized AgNPs, having peaks at 26.2°, 32.1°, and 47.2°. At the same time, the FTIR showed bands at 599, 963, 1,693, 2,299, 2,891, and 3,780 cm-1 for all the types of AgNPs indicating the presence of bacterial biomolecules with the developed AgNPs. The size and morphology of the AgNPs varied from 10 nm to several microns and exhibited spherical to porous sheets-like structures. The percentage of Ag varied from 37.8% (wt.%) to 61.6%, i.e., highest in AgNPs-K and lowest in AgNPs-M. Furthermore, the synthesized AgNPs exhibited potential for environmental remediation, with AgNPs-M exhibiting the highest removal efficiency (19.24% at 120 min) for methyl orange dye in simulated wastewater. Further, all three types of AgNPs were evaluated for the removal of methyl orange dye from the simulated wastewater, where the highest dye removal percentage was 19.24% at 120 min by AgNPs-M. Antibacterial potential of the synthesized AgNPs assessment against both Gram-positive (GPB) Bacillus subtilis (MBC23), B. cereus (MBC24), and Gram-negative bacteria Enterococcus faecalis (MBP13) revealed promising results, with AgNPs-M, exhibiting the largest zone of inhibition (12 mm) against GPB B. megaterium. Such investigation exhibits the potential of the bacteria for the synthesis of AgNPs with diverse morphology and potential applications in environmental remediation and antibacterial therapy-based synthesis of AgNPs.


Azo Compounds , Metal Nanoparticles , Micrococcus luteus , Silver , Silver/chemistry , Silver/pharmacology , Silver/metabolism , Metal Nanoparticles/chemistry , Azo Compounds/chemistry , Azo Compounds/pharmacology , Azo Compounds/metabolism , Micrococcus luteus/drug effects , Spectroscopy, Fourier Transform Infrared , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enterobacter aerogenes/drug effects , Enterobacter aerogenes/metabolism , X-Ray Diffraction , Water Pollutants, Chemical/metabolism , Coloring Agents/chemistry , Coloring Agents/pharmacology
9.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773003

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Environmental Monitoring , Rivers , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brazil , Rivers/chemistry , Biomarkers/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Metals/analysis , Characidae , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Geologic Sediments/chemistry , Fishes/metabolism
10.
World J Microbiol Biotechnol ; 40(7): 208, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767676

Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.


Biodegradation, Environmental , Electrochemical Techniques , Wastewater/chemistry , Hydrocarbons, Chlorinated/metabolism , Water Pollutants, Chemical/metabolism , Groundwater/chemistry , Organic Chemicals/metabolism
11.
Chemosphere ; 358: 142195, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692368

Due to the anthropogenic increase of atmospheric CO2 emissions, humanity is facing the negative effects of rapid global climate change. Both active emission reduction and carbon dioxide removal (CDR) technologies are needed to meet the Paris Agreement and limit global warming to 1.5 °C by 2050. One promising CDR approach is coastal enhanced weathering (CEW), which involves the placement of sand composed of (ultra)mafic minerals like olivine in coastal zones. Although the large-scale placement of olivine sand could beneficially impact the planet through the consumption of atmospheric CO2 and reduction in ocean acidification, it may also have physical and geochemical impacts on benthic communities. The dissolution of olivine can release dissolved constituents such as trace metals that may affect marine organisms. Here we tested acute and chronic responses of marine invertebrates to olivine sand exposure, as well as examined metal accumulation in invertebrate tissue resulting from olivine dissolution. Two different ecotoxicological experiments were performed on a range of benthic marine invertebrates (amphipod, polychaete, bivalve). The first experiment included acute and chronic survival and growth tests (10 and 20 days, respectively) of olivine exposure while the second had longer (28 day) exposures to measure chronic survival and bioaccumulation of trace metals (e.g. Ni, Cr, Co) released during olivine sand dissolution. Across all fauna we observed no negative effects on acute survival or chronic growth resulting solely from olivine exposure. However, over 28 days of exposure, the bent-nosed clam Macoma nasuta experienced reduced burrowing and accumulated 4.2 ± 0.7 µg g ww-1 of Ni while the polychaete Alitta virens accumulated 3.5 ± 0.9 µg g ww-1 of Ni. No significant accumulation of any other metals was observed. Future work should include longer-term laboratory studies as well as CEW field studies to validate these findings under real-world scenarios.


Aquatic Organisms , Iron Compounds , Magnesium Compounds , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/metabolism , Aquatic Organisms/metabolism , Aquatic Organisms/drug effects , Magnesium Compounds/chemistry , Iron Compounds/chemistry , Bioaccumulation , Metals/metabolism , Silicates , Invertebrates/drug effects , Invertebrates/metabolism , Silicon Dioxide/chemistry , Polychaeta/metabolism , Polychaeta/drug effects , Polychaeta/physiology , Bivalvia/metabolism , Bivalvia/drug effects
12.
Chemosphere ; 358: 142179, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692364

Household and personal care chemicals (HPCCs) constitute a significant component of everyday products, with their global usage on the rise. HPCCs are eventually discharged into municipal wastewater treatment plants (WWTPs). However, the behaviors of HPCCs inside the Bacillus Bioreactor (BBR) process, including their prevalence, fate, and elimination mechanisms, remain underexplored. Addressing this gap, our study delves into samples collected from a BBR process at a significant WWTP in the northeast of China. Our results spotlight the dominance of linear alkylbenzene sulfonates (LASs) in the influent with concentrations ranging between 238 and 789 µg/L, much higher than the other HPCC concentrations, and remained dominant in the subsequent treatment units. After treatment using the BBR process, the concentrations of HPCCs in the effluent were diminished. Examination of different treatment units underscores the grit chamber removed over 60% of higher-concentration HPCCs, while the performance of the (RBC) tank needs to be improved. Except for the ultraviolet radiation (UV)-filters, seasonal variations exert minimal impact on the concentrations and removal efficiencies of other HPCCs in the BBR process. According to the mass balance analysis, the important mechanisms for HPCC removal were biodegradation and sludge adsorption. Also, the octocrylene (OCT) concerns raised by the environmental risk assessment of the HPCCs residuals in the final effluent, indicate a moderate risk to the surrounding aquatic environment (0.1 < RQ < 1), whereas other HPCCs have a lower risk level (RQ < 0.1). Overall, the research offers new perspectives on the fate and elimination mechanisms of HPCCs throughout the BBR process.


Bacillus , Bioreactors , Seasons , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Bioreactors/microbiology , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Waste Disposal, Fluid/methods , Bacillus/metabolism , China , Biodegradation, Environmental , Cosmetics/analysis , Household Products/analysis , Alkanesulfonic Acids/analysis , Environmental Monitoring , Sewage
13.
Chemosphere ; 358: 142194, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692369

China's aquatic environment continues to face several difficulties. Ecological constructed wetland systems (CWs) can be used to treat polluted saline water to alleviate water shortages regionally and globally. However, the performance is limited by low temperatures. To expand the use of CWs, we introduced a slag-sponge, a flaky material derived from alkaline waste slag, to create a newly constructed wetland system that can operate at both low and high temperatures. We evaluated its effectiveness by placing it at different heights in our devices. The results showed that the treatment was effective for saline wastewater with multiple contaminants. The efficiency was 20% higher than that of traditional CWs. Slag-sponges were found to carry pore structures and exhibit thermal insulation, which led to the enrichment of functional microbial communities (Chryseobacterium and Exiguerium) at low temperatures according to the microbial species analysis. The enhanced CWs offer another option for the treatment of polluted saline water in the environment and provide promising strategies for the utilization of waste slag.


Temperature , Waste Disposal, Fluid , Wastewater , Wetlands , Wastewater/chemistry , Wastewater/microbiology , Waste Disposal, Fluid/methods , Bacteria/metabolism , China , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Water Purification/methods , Biodegradation, Environmental
14.
Sci Total Environ ; 931: 172920, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38701933

Scleractinian corals are capable of accumulating polycyclic aromatic hydrocarbons (PAHs) in reef environments; however, the mechanism behind their PAHs tolerance is unknown. This study investigated the occurrence and bioaccumulation of PAHs in coral reef ecosystems and examined the physiological responses induced by PAHs in coral hosts and their algal symbionts, the massive coral Galaxea fascicularis and branching coral Pocillopora damicornis. G. fascicularis had a higher PAHs accumulation capacity than P. damicornis. Both the coral hosts and algal symbionts preferentially accumulated acenaphthene, dibenzo(a,h)anthracene, and benzo(a)pyrene. The accumulated PAHs by G. fascicularis and P. damicornis hosts was accompanied by a reduction in detoxification ability. The accumulated PAHs could induce oxidative stress in P. damicorni hosts, thus G. fascicularis demonstrated a greater tolerance to PAHs compared to P. damicornis. Meanwhile, their algal symbionts had fewer physiological responses to accumulated PAHs than the coral hosts. Negative effects were not observed with benzo(a)pyrene. Taken together, these results suggest massive and branching scleractinian corals have different PAHs bioaccumulation and tolerance mechanisms, and indicate that long-term PAHs pollution could cause significant alterations of community structures in coral reef ecosystems.


Anthozoa , Coral Reefs , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Anthozoa/physiology , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/metabolism , Bioaccumulation , Environmental Monitoring , Symbiosis
15.
Chemosphere ; 358: 142171, 2024 Jun.
Article En | MEDLINE | ID: mdl-38714247

Marine oil spills directly cause polycyclic aromatic hydrocarbons (PAHs) pollution and affect marine organisms due to their toxic property. Chemical and bio-based dispersants composed of surfactants and solvents are considered effective oil spill-treating agents. Dispersants enhance oil biodegradation in the marine environment by rapidly increasing their solubility in the water column. However, the effect of dispersants, especially surfactants, on PAHs degradation by enzymes produced by microorganisms has not been studied at the molecular level. The role of the cytochrome P450 (CYP) enzyme in converting contaminants into reactive metabolites during the biodegradation process has been evidenced, but the activity in the presence of surfactants is still ambiguous. Thus, this study focused on the evaluation of the impact of chemical and bio-surfactants (i.e., Tween 80 (TWE) and Surfactin (SUC)) on the biodegradation of naphthalene (NAP), chrysene (CHR), and pyrene (PYR), the representative components of PAHs, with CYP enzyme from microalgae Parachlorella kessleri using molecular docking and molecular dynamics (MD) simulation. The molecular docking analysis revealed that PAHs bound to residues at the CYP active site through hydrophobic interactions for biodegradation. The MD simulation showed that the surfactant addition changed the enzyme conformation in the CYP-PAH complexes to provide more interactions between the enzyme and PAHs. This led to an increase in the enzyme's capability to degrade PAHs. Binding free energy (ΔG||Bind) calculations confirmed that surfactant treatment could enhance PAHs degradation by the enzyme. The SUC gave a better result on NAP and PYR biodegradation based on ΔG||Bind, while TWE facilitated the biodegradation of CHR. The research outputs could greatly facilitate evaluating the behaviors of oil spill-treating agents and oil spill response operations in the marine environment.


Biodegradation, Environmental , Molecular Docking Simulation , Molecular Dynamics Simulation , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons , Surface-Active Agents , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Cytochrome P-450 Enzyme System/metabolism , Chlorophyta/metabolism
16.
Chemosphere ; 358: 142270, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719126

To reduce the high cost of organic carbon sources in waste resource utilization in the cultivation of microalgae, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture Chlorella sorokiniana under the heterotrophic cultivation. The addition of VFAs in the heterotrophic condition enhanced the total nitrogen (TN) and phosphorus (TP) removal of C. sorokiniana, which proved the advantageous microalgae in using VFAs in the heterotrophic culture after screening in the previous study. To discover the possible mechanism of nitrogen and phosphorus adsorption in heterotrophic conditions by microalgae, the effect of different ratios of VFAs (acetic acid (AA): propionic acid (PA): butyric acid (BA)) on the nutrient removal and growth properties of C. sorokiniana was studied. In the 8:1:1 group, the highest efficiency (77.19%) of VFAs assimilation, the highest biomass (0.80 g L-1) and lipid content (31.35%) were achieved, with the highest TN and TP removal efficiencies of 97.44 % and 91.02 %, respectively. Moreover, an aerobic denitrifying bacterium, Pseudomonas, was determined to be the dominant genus under this heterotrophic condition. This suggested that besides nitrate uptake and utilization by C. sorokiniana under the heterotrophy, the conduct of the denitrification process was also the main reason for obtaining high nitrogen removal efficiency.


Chlorella , Fatty Acids, Volatile , Heterotrophic Processes , Microalgae , Nitrogen , Phosphorus , Waste Disposal, Fluid , Wastewater , Chlorella/metabolism , Chlorella/growth & development , Fatty Acids, Volatile/metabolism , Nitrogen/metabolism , Microalgae/metabolism , Wastewater/chemistry , Phosphorus/metabolism , Waste Disposal, Fluid/methods , Sewage/microbiology , Biomass , Denitrification , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
17.
Sci Total Environ ; 932: 173030, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38719043

Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.


Ciprofloxacin , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Introduced Species , Eichhornia/metabolism , Eichhornia/physiology , Anti-Bacterial Agents/toxicity , Hydrocharitaceae/physiology , Hydrocharitaceae/metabolism , Biodegradation, Environmental
18.
Environ Monit Assess ; 196(6): 502, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700594

Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.


Biodegradation, Environmental , Metals, Heavy , Wastewater , Water Pollutants, Chemical , Metals, Heavy/metabolism , Metals, Heavy/analysis , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Plants/metabolism
19.
World J Microbiol Biotechnol ; 40(7): 202, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743315

Currently, heavy metal-resistant (HMR) marine actinomycetes have attracted much attention worldwide due to their unique capabilities. In this study, 27 marine-derived actinomycetes were isolated from coastal beaches in the Arabian Gulf of Al-Jubail in Saudi Arabia and screened for resistance to 100 mg/L of the heavy metals Cd2+, Cr6+, Cu2+, Fe2+, Pb2+, and Ni2+ using different assay techniques. Six isolates were selected as HMRs, of which two isolates, JJB5 and JJB11, exhibited the highest maximum tolerance concentrations (200- > 300 mg/L). Both isolates were the highest among six-HMR screened for their biodegradation potential of plastics low-density polyethylene, polystyrene, and polyvinyl chloride, recording the highest weight loss (15 ± 1.22 - 65 ± 1.2%) in their thin films. They also showed the highest biodegradability of the pesticides acetamiprid, chlordane, hexachlorocyclohexane, indoxacarb and lindane, indicating promising removal capacities (95.70-100%) for acetamiprid and indoxacarb using HPLC analysis. Additionally, the cell-free filtrate (CFF) of both isolates displayed the highest antimicrobial activity among the six-HMR screened against a variety of microbial test strains, recording the highest inhibition zone diameters (13.76 ± 0.66 - 26.0 ± 1.13 mm). GC‒MS analyses of the ethyl acetate extract of their CFFs revealed the presence of diverse chemical compounds with a multitude of remarkable biological activities. Based on their spore morphology and wall-chemotype, they were assigned to the nocardioform-actinomycetes. Furthermore, their phenotypic characteristics, together with 16S rRNA gene sequencing (OR121525-OR121526), revealed them as Nocardia harenae JJB5 and Amycolatopsis marina JJB11. Our results suggest that marine HMR actinomycetes are promising candidates for various biotechnological applications.


Biodegradation, Environmental , Metals, Heavy , Microbial Sensitivity Tests , Nocardia , RNA, Ribosomal, 16S , Metals, Heavy/metabolism , RNA, Ribosomal, 16S/genetics , Nocardia/isolation & purification , Nocardia/genetics , Nocardia/metabolism , Saudi Arabia , Anti-Bacterial Agents/pharmacology , Phylogeny , Actinobacteria/metabolism , Actinobacteria/isolation & purification , Actinobacteria/genetics , Actinobacteria/classification , Water Pollutants, Chemical/metabolism , Seawater/microbiology , Pesticides/metabolism , Drug Resistance, Bacterial
20.
Water Sci Technol ; 89(9): 2384-2395, 2024 May.
Article En | MEDLINE | ID: mdl-38747955

Cr(VI) and phenol commonly coexist in wastewater, posing a great threat to the environment and human health. However, it is still a challenge for microorganisms to degrade phenol under high Cr(VI) stress. In this study, the phenol-degrading strain Bacillus cereus ZWB3 was co-cultured with the Cr(VI)-reducing strain Bacillus licheniformis MZ-1 to enhance phenol biodegradation under Cr(Ⅵ) stress. Compared with phenol-degrading strain ZWB3, which has weak tolerance to Cr(Ⅵ), and Cr(Ⅵ)-reducing strain MZ-1, which has no phenol-degrading ability, the co-culture of two strains could significantly increase the degraded rate and capacity of phenol. In addition, the co-cultured strains exhibited phenol degradation ability over a wide pH range (7-10). The reduced content of intracellular proteins and polysaccharides produced by the co-cultured strains contributed to the enhancement of phenol degradation and Cr(Ⅵ) tolerance. The determination coefficients R2, RMSE, and MAPE showed that the BP-ANN model could predict the degradation of phenol under various conditions, which saved time and economic cost. The metabolic pathway of microbial degradation of phenol was deduced by metabolic analysis. This study provides a valuable strategy for wastewater treatment containing Cr(Ⅵ) and phenol.


Biodegradation, Environmental , Chromium , Machine Learning , Phenol , Phenol/metabolism , Chromium/metabolism , Bacillus cereus/metabolism , Water Pollutants, Chemical/metabolism , Bacillus licheniformis/metabolism
...