Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
BMC Microbiol ; 23(1): 387, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057706

RESUMEN

OBJECTIVE: The goal of this study was to comprehensively investigate the characteristics of gut microbiota dysbiosis and metabolites levels in very low or extremely low birth weight (VLBW/ELBW) infants with white matter injury (WMI). METHODS: In this prospective cohort study, preterm infants with gestational age < 32 weeks and weight < 1.5 kg were investigated. Additionally, fecal samples were collected on days zero, 14d and 28d after admission to the intensive care unit. All subjects underwent brain scan via MRI and DTI at a corrected gestational age of 37 ~ 40 weeks. Based on the results of MRI examination, the VLBW/ELBW infants were divided into two groups: WMI and non-WMI. Finally, based on a multi-omics approach, we performed 16S rRNA gene sequencing, LC-MS/MS, and diffusion tension imaging to identify quantifiable and informative biomarkers for WMI. RESULT: We enrolled 23 patients with and 48 patients without WMI. The results of 16S RNA sequencing revealed an increase in the number of Staphylococcus and Acinetobacter species in the fecal samples of infants with WMI, as well as increasing levels of S. caprae and A._johnsonii. LEfSe analysis (LDA ≥ 4) showed that the WMI group carried an abundance of Staphylococcus species including S. caprae, members of the phyla Bacteroidota and Actinobacteriota, and Acinetobacter species. A total of 139 metabolic markers were significantly and differentially expressed between WMI and nWMI. KEGG pathway enrichment analysis revealed that the WMI group showed significant downregulation of 17 metabolic pathways including biosynthesis of arginine and primary bile acids. The WMI group showed delayed brain myelination, especially in the paraventricular white matter and splenium of corpus callosum. Staphylococcus species may affect WMI by downregulating metabolites such as cholic acid, allocholic acid, and 1,3-butadiene. Gut microbiota such as Acinetobacter and Bacteroidetes may alter white matter structurally by upregulating metabolites such as cinobufagin. CONCLUSION: Based on 16S RNA sequencing results, severe gut microbiota dysbiosis was observed in the WMI group. The results might reveal damage to potential signaling pathways of microbiota-gut-brain axis in gut microbiota. The mechanism was mediated via downregulation of the bile acid biosynthetic pathway.


Asunto(s)
Microbioma Gastrointestinal , Sustancia Blanca , Lactante , Humanos , Recién Nacido , Recien Nacido con Peso al Nacer Extremadamente Bajo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Microbioma Gastrointestinal/genética , Recien Nacido Prematuro , Eje Cerebro-Intestino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/química , Cromatografía Liquida , Multiómica , Genes de ARNr , Disbiosis , Estudios Prospectivos , Espectrometría de Masas en Tándem
2.
Environ Health Perspect ; 131(10): 107013, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37878794

RESUMEN

BACKGROUND: Growing epidemiological evidence suggests an adverse relationship between exposure to air pollutants and cognitive health, and this could be related to the effect of air pollution on vascular health. OBJECTIVE: We aim to evaluate the association between air pollution exposure and a magnetic resonance imaging (MRI) marker of cerebral vascular burden, white matter hyperintensities (WMH). METHODS: This cross-sectional analysis used data from the French Three-City Montpellier study. Randomly selected participants 65-80 years of age underwent an MRI examination to estimate their total and regional cerebral WMH volumes. Exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) at the participants' residential address during the 5 years before the MRI examination was estimated with land use regression models. Multinomial and binomial logistic regression assessed the associations between exposure to each of the three pollutants and categories of total and lobar WMH volumes. RESULTS: Participants' (n=582) median age at MRI was 70.7 years [interquartile range (IQR): 6.1], and 52% (n=300) were women. Median exposure to air pollution over the 5 years before MRI acquisition was 24.3 (IQR: 1.7) µg/m3 for PM2.5, 48.9 (14.6) µg/m3 for NO2, and 2.66 (0.60) 10-5/m for BC. We found no significant association between exposure to the three air pollutants and total WMH volume. We found that PM2.5 exposure was significantly associated with higher risk of temporal lobe WMH burden [odds ratio (OR) for an IQR increase=1.82 (95% confidence interval: 1.41, 2.36) for the second volume tercile, 2.04 (1.59, 2.61) for the third volume tercile, reference: first volume tercile]. Associations for other regional WMH volumes were inconsistent. CONCLUSION: In this population-based study in older adults, PM2.5 exposure was associated with increased risk of high WMH volume in the temporal lobe, strengthening the evidence on PM2.5 adverse effect on the brain. Further studies looking at different markers of cerebrovascular damage are still needed to document the potential vascular effects of air pollution. https://doi.org/10.1289/EHP12231.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Sustancia Blanca , Humanos , Femenino , Anciano , Masculino , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/química , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Dióxido de Nitrógeno
3.
J Korean Med Sci ; 38(16): e159, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37096314

RESUMEN

BACKGROUND: Numerous studies have shown the effect of particulate matter exposure on brain imaging markers. However, little evidence exists about whether the effect differs by the level of low-grade chronic systemic inflammation. We investigated whether the level of c-reactive protein (CRP, a marker of systemic inflammation) modifies the associations of particulate matter exposures with brain cortical gray matter thickness and white matter hyperintensities (WMH). METHODS: We conducted a cross-sectional study of baseline data from a prospective cohort study including adults with no dementia or stroke. Long-term concentrations of particulate matter ≤ 10 µm in diameter (PM10) and ≤ 2.5 µm (PM2.5) at each participant's home address were estimated. Global cortical thickness (n = 874) and WMH volumes (n = 397) were estimated from brain magnetic resonance images. We built linear and logistic regression models for cortical thickness and WMH volumes (higher versus lower than median), respectively. Significance of difference in the association between the CRP group (higher versus lower than median) was expressed as P for interaction. RESULTS: Particulate matter exposures were significantly associated with a reduced global cortical thickness only in the higher CRP group among men (P for interaction = 0.015 for PM10 and 0.006 for PM2.5). A 10 µg/m3 increase in PM10 was associated with the higher volumes of total WMH (odds ratio, 1.78; 95% confidence interval, 1.07-2.97) and periventricular WMH (2.00; 1.20-3.33). A 1 µg/m3 increase in PM2.5 was associated with the higher volume of periventricular WMH (odds ratio, 1.66; 95% confidence interval, 1.08-2.56). These associations did not significantly differ by the level of high sensitivity CRP. CONCLUSION: Particulate matter exposures were associated with a reduced global cortical thickness in men with a high level of chronic inflammation. Men with a high level of chronic inflammation may be susceptible to cortical atrophy attributable to particulate matter exposures.


Asunto(s)
Contaminantes Atmosféricos , Sustancia Blanca , Masculino , Adulto , Humanos , Material Particulado/análisis , Sustancia Gris , Sustancia Blanca/química , Estudios Prospectivos , Estudios Transversales , Exposición a Riesgos Ambientales , Inflamación , Encéfalo
4.
Environ Pollut ; 313: 120109, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36155148

RESUMEN

Air pollution exposure during early-life is associated with altered brain development, but the precise periods of susceptibility are unknown. We aimed to investigate whether there are periods of susceptibility of air pollution between conception and preadolescence in relation to white matter microstructure and brain volumes at 9-12 years old. We used data of 3515 children from the Generation R Study, a population-based birth cohort from Rotterdam, the Netherlands (2002-2006). We estimated daily levels of nitrogen dioxide (NO2), and particulate matter (PM2.5 and PM2.5absorbance) at participants' homes during pregnancy and childhood using land-use regression models. Diffusion tensor and structural brain images were obtained when children were 9-12 years of age, and we calculated fractional anisotropy and mean diffusivity, and several brain structure volumes. We performed distributed lag non-linear modeling adjusting for socioeconomic and lifestyle characteristics. We observed specific periods of susceptibility to all air pollutants from conception to age 5 years in association with lower fractional anisotropy and higher mean diffusivity that survived correction for multiple testing (e.g., -0.85 fractional anisotropy (95%CI -1.43; -0.27) per 5 µg/m3 increase in PM2.5 between conception and 4 years of age). We also observed certain periods of susceptibility to some air pollutants in relation to global brain and some subcortical brain volumes, but only the association between PM2.5 and putamen survived correction for multiple testing (172 mm3 (95%CI 57; 286) per 5 µg/m3 increase in PM2.5 between 4 months and 1.8 year of age). This study suggested that conception, pregnancy, infancy, toddlerhood, and early childhood seem to be susceptible periods to air pollution exposure for the development of white matter microstructure and the putamen volume. Longitudinal studies with repeated brain outcome measurements are needed for understanding the trajectories and the long-term effects of exposure to air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Sustancia Blanca , Contaminación del Aire/efectos adversos , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Dióxido de Nitrógeno , Material Particulado/análisis , Embarazo , Sustancia Blanca/química , Sustancia Blanca/diagnóstico por imagen
5.
Sci Rep ; 11(1): 20200, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642398

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with typical neuropathological hallmarks, such as neuritic plaques and neurofibrillary tangles, preferentially found at layers III and V. The distribution of both hallmarks provides the basis for the staging of AD, following a hierarchical pattern throughout the cerebral cortex. To unravel the background of this layer-specific vulnerability, we evaluated differential gene expression of supragranular and infragranular layers and subcortical white matter in both healthy controls and AD patients. We identified AD-associated layer-specific differences involving protein-coding and non-coding sequences, most of those present in the subcortical white matter, thus indicating a critical role for long axons and oligodendrocytes in AD pathomechanism. In addition, GO analysis identified networks containing synaptic vesicle transport, vesicle exocytosis and regulation of neurotransmitter levels. Numerous AD-associated layer-specifically expressed genes were previously reported to undergo layer-specific switches in recent hominid brain evolution between layers V and III, i.e., those layers that are most vulnerable to AD pathology. Against the background of our previous finding of accelerated evolution of AD-specific gene expression, here we suggest a critical role in AD pathomechanism for this phylogenetic layer-specific adaptation of gene expression, which is most prominently seen in the white matter compartment.


Asunto(s)
Enfermedad de Alzheimer/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , ARN no Traducido/genética , Sustancia Blanca/química , Anciano , Anciano de 80 o más Años , Axones/química , Estudios de Casos y Controles , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Oligodendroglía/química , Especificidad de Órganos , Análisis de Secuencia de ARN
6.
J Comp Neurol ; 529(16): 3676-3708, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34259349

RESUMEN

In the current study, we examined the number, distribution, and aspects of the neurochemical identities of infracortical white matter neurons, also termed white matter interstitial cells (WMICs), in the brains of a southern lesser galago (Galago moholi), a black-capped squirrel monkey (Saimiri boliviensis boliviensis), and a crested macaque (Macaca nigra). Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most dense close to inner cortical border, decreasing in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed estimates of approximately 1.1, 10.8, and 37.7 million WMICs within the infracortical white matter of the galago, squirrel monkey, and crested macaque, respectively. The total numbers of WMICs form a distinct negative allometric relationship with brain mass and white matter volume when examined in a larger sample of primates where similar measures have been obtained. In all three primates studied, the highest densities of WMICs were in the white matter of the frontal lobe, with the occipital lobe having the lowest. Immunostaining revealed significant subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS) and calretinin, with very few WMICs containing parvalbumin, and none containing calbindin. The nNOS and calretinin immunopositive WMICs represent approximately 21% of the total WMIC population; however, variances in the proportions of these neurochemical phenotypes were noted. Our results indicate that both the squirrel monkey and crested macaque might be informative animal models for the study of WMICs in neurodegenerative and psychiatric disorders in humans.


Asunto(s)
Química Encefálica/fisiología , Encéfalo/citología , Galagidae/fisiología , Macaca/fisiología , Neuronas/ultraestructura , Saimiri/fisiología , Sustancia Blanca/citología , Animales , Calbindina 2/metabolismo , Calbindinas/metabolismo , Recuento de Células , Lóbulo Frontal/citología , Lóbulo Frontal/ultraestructura , Inmunohistoquímica , Masculino , Neuronas/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Lóbulo Occipital/citología , Lóbulo Occipital/ultraestructura , Parvalbúminas/metabolismo , Especificidad de la Especie , Sustancia Blanca/química
7.
J Comp Neurol ; 529(14): 3429-3452, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34180538

RESUMEN

We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), throughout the telencephalic white matter of an adult female chimpanzee. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to the inner border of cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed an estimate of approximately 137.2 million WMICs within the infracortical white matter of the chimpanzee brain studied. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, approximately 14.4 million in number), calretinin (CR, approximately 16.7 million), very few WMICs containing parvalbumin (PV), and no calbindin-immunopositive neurons. The nNOS, CR, and PV immunopositive WMICs, possibly all inhibitory neurons, represent approximately 22.6% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism, epilepsy, and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/química , Pan troglodytes/fisiología , Sustancia Blanca/fisiología , Animales , Química Encefálica , Calbindina 2/metabolismo , Calbindinas/metabolismo , Recuento de Células , Corteza Cerebral/química , Corteza Cerebral/citología , Femenino , Inmunohistoquímica , Modelos Animales , Óxido Nítrico Sintasa de Tipo I/metabolismo , Parvalbúminas/metabolismo , Sustancia Blanca/química , Sustancia Blanca/citología
8.
Exp Neurol ; 340: 113655, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33617887

RESUMEN

Unraveling the pathology of stroke is a prerequisite for designing therapeutic strategies. It was reported that myelin injury exceeded axonal loss in the peri-infarct region of rodent white matter stroke. An in-depth investigation of the post-stroke white matter damage in higher-order species might innovate stroke intervention. In this study, adult male cynomolgus monkeys received surgical middle cerebral artery occlusion (MCAO), and serial magnetic resonance scans to non-invasively assess brain damage. Spontaneous movements were recorded to evaluate post-stroke behavior. The axon and myelin loss, as well as immune cell infiltration were examined using immunohistochemistry. Magnetic resonance imaging revealed cerebral infarcts and white matter injury after MCAO in monkeys, which were confirmed by neurological deficits. Immunostaining of white matter fibers showed substantial demyelination whilst retention of axons in the infarcts 8 days post MCAO, while a progressive loss of myelin and axons was observed after one month. Gliosis, microglia activation, and leukocyte infiltration were identified in the lesions. These results demonstrate that demyelination predates axonal injury in non-human primate ischemic stroke, which provides a time window for stroke intervention focusing on prevention of progressive axonal loss through myelin regeneration.


Asunto(s)
Axones/patología , Isquemia Encefálica/patología , Enfermedades Desmielinizantes/patología , Accidente Cerebrovascular Isquémico/patología , Sustancia Blanca/patología , Animales , Axones/química , Axones/inmunología , Isquemia Encefálica/inmunología , Enfermedades Desmielinizantes/inmunología , Gliosis/inmunología , Gliosis/patología , Accidente Cerebrovascular Isquémico/inmunología , Macaca fascicularis , Masculino , Sustancia Blanca/química , Sustancia Blanca/inmunología
9.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593907

RESUMEN

The molecular composition of myelin membranes determines their structure and function. Even minute changes to the biochemical balance can have profound consequences for axonal conduction and the synchronicity of neural networks. Hypothesizing that the earliest indication of myelin injury involves changes in the composition and/or polarity of its constituent lipids, we developed a sensitive spectroscopic technique for defining the chemical polarity of myelin lipids in fixed frozen tissue sections from rodent and human. The method uses a simple staining procedure involving the lipophilic dye Nile Red, whose fluorescence spectrum varies according to the chemical polarity of the microenvironment into which the dye embeds. Nile Red spectroscopy identified histologically intact yet biochemically altered myelin in prelesioned tissues, including mouse white matter following subdemyelinating cuprizone intoxication, as well as normal-appearing white matter in multiple sclerosis brain. Nile Red spectroscopy offers a relatively simple yet highly sensitive technique for detecting subtle myelin changes.


Asunto(s)
Esclerosis Múltiple/patología , Vaina de Mielina/química , Oligodendroglía/patología , Oxazinas/química , Espectrometría de Fluorescencia/métodos , Anciano , Animales , Estudios de Casos y Controles , Línea Celular , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Colorantes Fluorescentes , Sustancia Gris/química , Sustancia Gris/citología , Humanos , Lípidos/química , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Oligodendroglía/química , Sustancia Blanca/química , Sustancia Blanca/citología
10.
NMR Biomed ; 34(2): e4438, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33219598

RESUMEN

The primary lesion arising from the initial insult after traumatic brain injury (TBI) triggers a cascade of secondary tissue damage, which may also progress to connected brain areas in the chronic phase. The aim of this study was, therefore, to investigate variations in the susceptibility distribution related to these secondary tissue changes in a rat model after severe lateral fluid percussion injury. We compared quantitative susceptibility mapping (QSM) and R2 * measurements with histological analyses in white and grey matter areas outside the primary lesion but connected to the lesion site. We demonstrate that susceptibility variations in white and grey matter areas could be attributed to reduction in myelin, accumulation of iron and calcium, and gliosis. QSM showed quantitative changes attributed to secondary damage in areas located rostral to the lesion site that appeared normal in R2 * maps. However, combination of QSM and R2 * was informative in disentangling the underlying tissue changes such as iron accumulation, demyelination, or calcifications. Therefore, combining QSM with R2 * measurement can provide a more detailed assessment of tissue changes and may pave the way for improved diagnosis of TBI, and several other complex neurodegenerative diseases.


Asunto(s)
Química Encefálica , Daño Encefálico Crónico/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Animales , Daño Encefálico Crónico/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Mapeo Encefálico/métodos , Calcio/análisis , Recuento de Células , Cuerpo Calloso/química , Cuerpo Calloso/diagnóstico por imagen , Gliosis/diagnóstico por imagen , Sustancia Gris/química , Sustancia Gris/diagnóstico por imagen , Hierro/análisis , Masculino , Vaina de Mielina/química , Ratas , Ratas Sprague-Dawley , Sustancia Blanca/química , Sustancia Blanca/diagnóstico por imagen
11.
NMR Biomed ; 34(2): e4448, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33270326

RESUMEN

Sodium is crucial for the maintenance of cell physiology, and its regulation of the sodium-potassium pump has implications for various neurological conditions. The distribution of sodium concentrations in tissue can be quantitatively evaluated by means of sodium MRI (23 Na-MRI). Despite its usefulness in diagnosing particular disease conditions, tissue sodium concentration (TSC) estimated from 23 Na-MRI can be strongly biased by partial volume effects (PVEs) that are induced by broad point spread functions (PSFs) as well as tissue fraction effects. In this work, we aimed to propose a robust voxel-wise partial volume correction (PVC) method for 23 Na-MRI. The method is based on a linear regression (LR) approach to correct for tissue fraction effects, but it utilizes a 3D kernel combined with a modified least trimmed square (3D-mLTS) method in order to minimize regression-induced inherent smoothing effects. We acquired 23 Na-MRI data with conventional Cartesian sampling at 7 T, and spill-over effects due to the PSF were considered prior to correcting for tissue fraction effects using 3D-mLTS. In the simulation, we found that the TSCs of gray matter (GM) and white matter (WM) were underestimated by 20% and 11% respectively without correcting tissue fraction effects, but the differences between ground truth and PVE-corrected data after the PVC using the 3D-mLTS method were only approximately 0.6% and 0.4% for GM and WM, respectively. The capability of the 3D-mLTS method was further demonstrated with in vivo 23 Na-MRI data, showing significantly lower regression errors (ie root mean squared error) as compared with conventional LR methods (p < 0.001). The results of simulation and in vivo experiments revealed that 3D-mLTS is superior for determining under- or overestimated TSCs while preserving anatomical details. This suggests that the 3D-mLTS method is well suited for the accurate determination of TSC, especially in small focal lesions associated with pathological conditions.


Asunto(s)
Química Encefálica , Neuroimagen/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Sodio/análisis , Adulto , Líquido Cefalorraquídeo/química , Simulación por Computador , Conjuntos de Datos como Asunto , Femenino , Sustancia Gris/química , Humanos , Modelos Lineales , Masculino , Método de Montecarlo , Resonancia Magnética Nuclear Biomolecular/instrumentación , Tamaño de los Órganos , Fantasmas de Imagen , Espectroscopía de Protones por Resonancia Magnética , Sustancia Blanca/química , Adulto Joven
12.
Biomolecules ; 10(8)2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722088

RESUMEN

Fourier Transform Infrared microspectroscopy (µFTIR) is a very useful method to analyze the biochemical properties of biological samples in situ. Many diseases affecting the central nervous system (CNS) have been studied using this method, to elucidate alterations in lipid oxidation or protein aggregation, among others. In this work, we describe in detail the characteristics between grey matter (GM) and white matter (WM) areas of the human brain by µFTIR, and we compare them with the mouse brain (strain C57BL/6), the most used animal model in neurological disorders. Our results show a clear different infrared profile between brain areas in the lipid region of both species. After applying a second derivative in the data, we established a 1.5 threshold value for the lipid/protein ratio to discriminate between GM and WM areas in non-pathological conditions. Furthermore, we demonstrated intrinsic differences of lipids and proteins by cerebral area. Lipids from GM present higher C=CH, C=O and CH3 functional groups compared to WM in humans and mice. Regarding proteins, GM present lower Amide II amounts and higher intramolecular ß-sheet structure amounts with respect to WM in both species. However, the presence of intermolecular ß-sheet structures, which is related to ß-aggregation, was only observed in the GM of some human individuals. The present study defines the relevant biochemical properties of non-pathological human and mouse brains by µFTIR as a benchmark for future studies involving CNS pathological samples.


Asunto(s)
Sustancia Gris/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sincrotrones , Sustancia Blanca/química , Amidas/análisis , Animales , Corteza Cerebral/química , Humanos , Lípidos/análisis , Ratones Endogámicos C57BL , Análisis de Componente Principal , Conformación Proteica en Lámina beta , Proteínas/análisis , Proteínas/química , Especificidad de la Especie , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación
13.
J Pathol ; 251(3): 262-271, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32391572

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. The majority of cases are sporadic (sALS), while the most common inherited form is due to C9orf72 mutation (C9ALS). A high burden of inclusion pathology is seen in glia (including oligodendrocytes) in ALS, especially in C9ALS. Myelin basic protein (MBP) messenger RNA (mRNA) must be transported to oligodendrocyte processes for myelination, a possible vulnerability for normal function. TDP43 is found in pathological inclusions in ALS and is a component of mRNA transport granules. Thus, TDP43 aggregation could lead to MBP loss. Additionally, the hexanucleotide expansion of mutant C9ALS binds hnRNPA2/B1, a protein essential for mRNA transport, causing potential further impairment of hnRNPA2/B1 function, and thus myelination. Using immunohistochemistry for p62 and TDP43 in human post-mortem tissue, we found a high burden of glial inclusions in the prefrontal cortex, precentral gyrus, and spinal cord in ALS, which was greater in C9ALS than in sALS cases. Double staining demonstrated that the majority of these inclusions were in oligodendrocytes. Using immunoblotting, we demonstrated reduced MBP protein levels relative to PLP (a myelin component that relies on protein not mRNA transport) and neurofilament protein (an axonal marker) in the spinal cord. This MBP loss was disproportionate to the level of PLP and axonal loss, suggesting that impaired mRNA transport may be partly responsible. Finally, we show that in C9ALS cases, the level of oligodendroglial inclusions correlates inversely with levels of hnRNPA2/B1 and the number of oligodendrocyte precursor cells. We conclude that there is considerable oligodendrocyte pathology in ALS, which at least partially reflects impairment of mRNA transport. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Axones/patología , Oligodendroglía/patología , Tractos Piramidales/patología , Sustancia Blanca/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Autopsia , Axones/química , Biomarcadores/análisis , Proteína C9orf72/genética , Estudios de Casos y Controles , Proteínas de Unión al ADN/análisis , Predisposición Genética a la Enfermedad , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/análisis , Humanos , Mutación , Proteína Básica de Mielina/análisis , Oligodendroglía/química , Fenotipo , Tractos Piramidales/química , Transporte de ARN , ARN Mensajero/metabolismo , Proteína Sequestosoma-1/análisis , Factores de Transcripción/análisis , Sustancia Blanca/química
14.
Commun Biol ; 3(1): 261, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444827

RESUMEN

A diverse set of white matter connections supports seamless transitions between cognitive states. However, it remains unclear how these connections guide the temporal progression of large-scale brain activity patterns in different cognitive states. Here, we analyze the brain's trajectories across a set of single time point activity patterns from functional magnetic resonance imaging data acquired during the resting state and an n-back working memory task. We find that specific temporal sequences of brain activity are modulated by cognitive load, associated with age, and related to task performance. Using diffusion-weighted imaging acquired from the same subjects, we apply tools from network control theory to show that linear spread of activity along white matter connections constrains the probabilities of these sequences at rest, while stimulus-driven visual inputs explain the sequences observed during the n-back task. Overall, these results elucidate the structural underpinnings of cognitively and developmentally relevant spatiotemporal brain dynamics.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Descanso/fisiología , Sustancia Blanca/química , Adolescente , Adulto , Mapeo Encefálico , Niño , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Sustancia Blanca/fisiología , Adulto Joven
15.
J Comp Neurol ; 528(17): 3023-3038, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32103488

RESUMEN

A large population of infracortical white matter neurons, or white matter interstitial cells (WMICs), are found within the subcortical white matter of the mammalian telencephalon. We examined WMICs in three species of megachiropterans, Megaloglossus woermanni, Casinycteris argynnis, and Rousettus aegyptiacus, using immunohistochemical and stereological techniques. Immunostaining for neuronal nuclear marker (NeuN) revealed substantial numbers of WMICs in each species-M. woermanni 124,496 WMICs, C. argynnis 138,458 WMICs, and the larger brained R. aegyptiacus having an estimated WMIC population of 360,503. To examine the range of inhibitory neurochemical types we used antibodies against parvalbumin, calbindin, calretinin, and neural nitric oxide synthase (nNOS). The calbindin and nNOS immunostained neurons were the most commonly observed, while those immunoreactive for calretinin and parvalbumin were sparse. The proportion of WMICs exhibiting inhibitory neurochemical profiles was ~26%, similar to that observed in previously studied primates. While for the most part the WMIC population in the megachiropterans studied was similar to that observed in other mammals, the one feature that differed was the high proportion of WMICs immunoreactive to calbindin, whereas in primates (macaque monkey, lar gibbon and human) the highest proportion of inhibitory WMICs contain calretinin. Interestingly, there appears to be an allometric scaling of WMIC numbers with brain mass. Further quantitative comparative work across more mammalian species will reveal the developmental and evolutionary trends associated with this infrequently studied neuronal population.


Asunto(s)
Química Encefálica , Encéfalo/citología , Neuronas/química , Sustancia Blanca/química , Sustancia Blanca/citología , Animales , Encéfalo/fisiología , Química Encefálica/fisiología , Recuento de Células/métodos , Tamaño de la Célula , Quirópteros , Masculino , Neuronas/fisiología , Especificidad de la Especie , Sustancia Blanca/fisiología
16.
Environ Health Perspect ; 128(2): 27005, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32074458

RESUMEN

BACKGROUND: Air pollution has been related to brain structural alterations, but a relationship with white matter microstructure is unclear. OBJECTIVES: We assessed whether pregnancy and childhood exposures to air pollution are related to white matter microstructure in preadolescents. METHODS: We used data of 2,954 children from the Generation R Study, a population-based birth cohort from Rotterdam, Netherlands (2002-2006). Concentrations of 17 air pollutants including nitrogen oxides (NOX), particulate matter (PM), and components of PM were estimated at participants' homes during pregnancy and childhood using land-use regression models. Diffusion tensor images were obtained at child's 9-12 years of age, and fractional anisotropy (FA) and mean diffusivity (MD) were computed. We performed linear regressions adjusting for socioeconomic and lifestyle characteristics. Single-pollutant analyses were followed by multipollutant analyses using the Deletion/Substitution/Addition (DSA) algorithm. RESULTS: In the single-pollutant analyses, higher concentrations of several air pollutants during pregnancy or childhood were associated with significantly lower FA or higher MD (p<0.05). In multipollutant models of pregnancy exposures selected by DSA, higher concentration of fine particles was associated with significantly lower FA [-0.71 (95% CI: -1.26, -0.16) per 5 µg/m3 fine particles] and higher concentration of elemental silicon with significantly higher MD [0.06 (95% CI: 0.01, 0.11) per 100 ng/m3 silicon]. Multipollutant models of childhood exposures selected by DSA indicated significant associations of NOX with FA [-0.14 (95% CI: -0.23, -0.04) per 20-µg/m3 NOX increase], and of elemental zinc and the oxidative potential of PM with MD [0.03 (95% CI: 0.01, 0.04) per 10-ng/m3 zinc increase and 0.07 (95% CI: 0.00, 0.44) per 1-nmol DTT/min/m3 oxidative potential increase]. Mutually adjusted models of significant exposures during pregnancy and childhood indicated significant associations of silicon during pregnancy, and zinc during childhood, with MD. DISCUSSION: Exposure in pregnancy and childhood to air pollutants from tailpipe and non-tailpipe emissions were associated with lower FA and higher MD in white matter of preadolescents. https://doi.org/10.1289/EHP4709.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Sustancia Blanca/química , Contaminación del Aire , Niño , Femenino , Humanos , Masculino , Países Bajos , Óxidos de Nitrógeno , Material Particulado
17.
Int J Legal Med ; 134(2): 603-612, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31900626

RESUMEN

PURPOSE: The detection and quantification of metabolites relevant for the diagnosis of fatal metabolic disorders by proton magnetic resonance spectroscopy (1H-MRS) was recently demonstrated. This prospective study aimed to compare the concentrations of beta-hydroxybutyrate (BHB), glucose (GLC), and lactate (LAC) derived from both biochemical analyses and 1H-MRS for the diagnosis of fatal metabolic disorders. METHODS: In total, 20 cases with suspected fatal metabolic disorders were included in the study. For the agreement based on thresholds, the concentrations of BHB and GLC in the vitreous humor (VH) from the right vitreous and in cerebrospinal fluid (CSF) from the right lateral ventricle were derived from 1H-MRS and biochemical analyses. The predefined thresholds for pathological elevations were 2.5 mmol/l for BHB and 10 mmol/l for GLC based on the literature. In addition, concentrations of the same metabolites in white matter (WM) tissue from the corona radiata of the right hemisphere were analyzed experimentally using both methods. To enable the biochemical analysis, a dialysate of WM tissue was produced. For all three regions, the LAC concentration was determined by both methods. RESULTS: The conclusive agreement based on thresholds was almost perfect between both methods with only one disagreement in a total of 70 comparisons due to the interference of a ferromagnetic dental brace. The differences in the concentrations between both methods showed high standard deviations. Confidence intervals of the bias not including 0 were found in CSF-GLC (- 3.1 mmol/l), WM-GLC (1.1 mmol/l), and WM-LAC (- 6.5 mmol/l). CONCLUSION: Despite a considerable total error attributable to both methods, MRS derives the same forensic conclusions as conventional biochemical analyses. An adaptation of the protocol to reduce the detected errors and more data are needed for the long-term validation of MRS for the diagnosis of fatal metabolic disorders. The production of WM dialysates cannot be recommended due to high glycolytic loss.


Asunto(s)
Ácido 3-Hidroxibutírico/análisis , Glucosa/análisis , Ácido Láctico/análisis , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/mortalidad , Espectroscopía de Protones por Resonancia Magnética , Ácido 3-Hidroxibutírico/líquido cefalorraquídeo , Autopsia , Biomarcadores/análisis , Glucosa/líquido cefalorraquídeo , Humanos , Ácido Láctico/líquido cefalorraquídeo , Ventrículos Laterales/química , Estudios Prospectivos , Cuerpo Vítreo/química , Sustancia Blanca/química
18.
J Comp Neurol ; 528(3): 453-467, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31483857

RESUMEN

Continuing investigations of corticostriatal connections in rodents emphasize an intricate architecture where striatal projections originate from different combinations of cortical layers, include an inhibitory component, and form terminal arborizations which are cell-type dependent, extensive, or compact. Here, we report that in macaque monkeys, deep and superficial cortical white matter neurons (WMNs), peri-claustral WMNs, and the claustrum proper project to the putamen. WMNs retrogradely labeled by injections in the putamen (four injections in three macaques) were widely distributed, up to 10 mm antero-posterior from the injection site, mainly dorsal to the putamen in the external capsule, and below the premotor cortex. Striatally projecting labeled WMNs (WMNsST) were heterogeneous in size and shape, including a small GABAergic component. We compared the number of WMNsST with labeled claustral and cortical neurons and also estimated their proportion in relation to total WMNs. Since some WMNsST were located adjoining the claustrum, we wanted to compare results for density and distribution of striatally projecting claustral neurons (ClaST). ClaST neurons were morphologically heterogeneous and mainly located in the dorsal and anterior claustrum, in regions known to project to frontal, motor, and cingulate cortical areas. The ratio of ClaST to WMNsST was about 4:1 averaged across the four injections. These results provide new specifics on the connectional networks of WMNs in nonhuman primates, and delineate additional loops in the corticostriatal architecture, consisting of interconnections across cortex, claustralstriatal and striatally projecting WMNs.


Asunto(s)
Claustro/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Putamen/fisiología , Sustancia Blanca/fisiología , Animales , Claustro/química , Femenino , Macaca , Macaca mulatta , Masculino , Red Nerviosa/química , Vías Nerviosas/química , Vías Nerviosas/fisiología , Neuronas/química , Putamen/química , Sustancia Blanca/química
19.
Acta Neuropathol Commun ; 7(1): 206, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31829283

RESUMEN

Multiple Sclerosis (MS) is the most common cause of acquired neurological disability in young adults, pathologically characterized by leukocyte infiltration of the central nervous system, demyelination of the white and grey matter, and subsequent axonal loss. Microglia are proposed to play a role in MS lesion formation, however previous literature has not been able to distinguish infiltrated macrophages from microglia. Therefore, in this study we utilize the microglia-specific, homeostatic markers TMEM119 and P2RY12 to characterize their immunoreactivity in MS grey matter lesions in comparison to white matter lesions. Furthermore, we assessed the immunological status of the white and grey matter lesions, as well as the responsivity of human white and grey matter derived microglia to inflammatory mediators. We are the first to show that white and grey matter lesions in post-mortem human material differ in their immunoreactivity for the homeostatic microglia-specific markers TMEM119 and P2RY12. In particular, whereas immunoreactivity for TMEM119 and P2RY12 is decreased in the center of WMLs, immunoreactivity for both markers is not altered in GMLs. Based on data from post-mortem human microglia cultures, treated with IL-4 or IFNγ+LPS and on  counts of CD3+ or CD20+ lymphocytes in lesions, we show that downregulation of TMEM119 and P2RY12  immunoreactivity in MS lesions corresponds with the presence of lymphocytes and lymphocyte-derived cytokines within the parenchyma but not in  the meninges. Furthermore, the presence of TMEM119+ and partly P2RY12+ microglia in pre-active lesions as well as in  the rim of active white and grey matter lesions, in addition to TMEM119+ and P2RY12+ rod-like microglia in subpial grey matter lesions suggest that blocking the entrance of lymphocytes into the CNS of MS patients may not interfere with all possible effects of TMEM119+ and P2RY12+ microglia in both white and grey matter MS lesions.


Asunto(s)
Sustancia Gris/metabolismo , Proteínas de la Membrana/metabolismo , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Sustancia Blanca/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Sustancia Gris/química , Sustancia Gris/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Proteínas de la Membrana/análisis , Microglía/química , Microglía/patología , Persona de Mediana Edad , Esclerosis Múltiple/patología , Receptores Purinérgicos P2Y12/análisis , Sustancia Blanca/química , Sustancia Blanca/patología
20.
Proc Natl Acad Sci U S A ; 116(50): 25243-25249, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31754041

RESUMEN

Cardiovascular risk factors such as dyslipidemia and hypertension increase the risk for white matter pathology and cognitive decline. We hypothesize that white matter levels of N-acetylaspartate (NAA), a chemical involved in the metabolic pathway for myelin lipid synthesis, could serve as a biomarker that tracks the influence of cardiovascular risk factors on white matter prior to emergence of clinical changes. To test this, we measured levels of NAA across white matter and gray matter in the brain using echo planar spectroscopic imaging (EPSI) in 163 individuals and examined the relationship of regional NAA levels and cardiovascular risk factors as indexed by the Framingham Cardiovascular Risk Score (FCVRS). NAA was strongly and negatively correlated with FCVRS across the brain, but, after accounting for age and sex, the association was found primarily in white matter regions, with additional effects found in the thalamus, hippocampus, and cingulate gyrus. FCVRS was also negatively correlated with creatine levels, again primarily in white matter. The results suggest that cardiovascular risks are related to neurochemistry with a predominantly white matter pattern and some subcortical and cortical gray matter involvement. NAA mapping of the brain may provide early surveillance for the potential subclinical impact of cardiovascular and metabolic risk factors on the brain.


Asunto(s)
Ácido Aspártico/análogos & derivados , Enfermedades Cardiovasculares/diagnóstico , Sustancia Gris/metabolismo , Sustancia Blanca/metabolismo , Adulto , Ácido Aspártico/análisis , Ácido Aspártico/metabolismo , Presión Sanguínea , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Imagen Eco-Planar , Femenino , Sustancia Gris/química , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Sustancia Blanca/química , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...