Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
PeerJ ; 12: e17877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131614

RESUMEN

Background: Plants allocate resources to growth, defense, and stress resistance, and resource availability can affect the balance between these allocations. Allocation patterns are well-known to differ among species, but what controls possible intra-specific trade-offs and if variation in growth vs. defense potentially evolves in adaptation to resource availability. Methods: We measured growth and defense in a provenance trial of rubber trees (Hevea brasiliensis) with clones originating from the Amazon basin. To test hypotheses on the allocation to growth vs. defense, we relate biomass growth and latex production to wood and leaf traits, to climate and soil variables from the location of origin, and to the genetic relatedness of the Hevea clones. Results: Contrary to expectations, there was no trade-off between growth and defense, but latex yield and biomass growth were positively correlated, and both increased with tree size. The absence of a trade-off may be attributed to the high resource availability in a plantation, allowing trees to allocate resources to both growth and defense. Growth was weakly correlated with leaf traits, such as leaf mass per area, intrinsic water use efficiency, and leaf nitrogen content, but the relative investment in growth vs. defense was not associated with specific traits or environmental variables. Wood and leaf traits showed clinal correlations to the rainfall and soil variables of the places of origin. These traits exhibited strong phylogenetic signals, highlighting the role of genetic factors in trait variation and adaptation. The study provides insights into the interplay between resource allocation, environmental adaptations, and genetic factors in trees. However, the underlying drivers for the high variation of latex production in one of the commercially most important tree species remains unexplained.


Asunto(s)
Hevea , Látex , Hojas de la Planta , Hevea/genética , Hevea/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Látex/metabolismo , Biomasa , Madera/genética , Filogenia , Especificidad de la Especie
2.
J Integr Plant Biol ; 66(8): 1658-1674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031878

RESUMEN

The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Madera , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Pared Celular/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Madera/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Xilema/metabolismo , Xilema/genética , Lignina/biosíntesis , Lignina/metabolismo , Plantas Modificadas Genéticamente , Genes de Plantas , Celulosa/biosíntesis , Celulosa/metabolismo
3.
Plant Sci ; 346: 112138, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825043

RESUMEN

Vascular cambium in tree species is a cylindrical domain of meristematic cells that are responsible for producing secondary xylem (also called wood) inward and secondary phloem outward. The poplar (Populus trichocarpa) WUSCHEL (WUS)-RELATED HOMEOBOX (WOX) family members, PtrWUSa and PtrWOX13b, were previously shown to be expressed in vascular cambium and differentiating xylem cells in poplar stems, but their functions remain unknown. Here, we investigated roles of PtrWUSa, PtrWOX13b and their close homologs in vascular organization and wood formation. Expression analysis showed that like PtrWUSa and PtrWOX13b, their close homologs, PtrWUSb, PtrWUS4a/b and PtrWOX13a/c, were also expressed in vascular cambium and differentiating xylem cells in poplar stems. PtrWUSa also exhibited a high level of expression in developing phloem fibers. Expression of PtrWUSa fused with the dominant EAR repression domain (PtrWUSa-DR) in transgenic poplar caused retarded growth of plants with twisted stems and curled leaves and a severe disruption of vascular organization. In PtrWUSa-DR stems, a drastic proliferation of cells occurred in the phloem region between vascular cambium and phloem fibers and they formed islands of ectopic vascular tissues or phloem fiber-like sclerenchyma cells. A similar proliferation of cells was also observed in PtrWUSa-DR leaf petioles and midveins. On the other hand, overexpression of PtrWOX4a-DR caused ectopic formation of vascular bundles in the cortical region, and overexpression of PtrWOX13a-DR and PtrWOX13b-DR led to a reduction in wood formation without affecting vascular organization in transgenic poplar plants. Together, these findings indicate crucial roles of PtrWUSa and PtrWOX13a/b in regulating vascular organization and wood formation, which furthers our understanding of the functions of WOX genes in regulating vascular cambium activity in tree species.


Asunto(s)
Cámbium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Madera , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/genética , Cámbium/genética , Cámbium/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Genes Homeobox , Floema/genética , Floema/crecimiento & desarrollo , Floema/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo
4.
Plant Sci ; 346: 112159, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901779

RESUMEN

Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Lignina , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Pared Celular/metabolismo , Lignina/metabolismo , Lignina/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/metabolismo , Xilema/genética , Madera/metabolismo , Madera/genética , Madera/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Dedos de Zinc CYS2-HIS2 , Dedos de Zinc
5.
BMC Genom Data ; 25(1): 60, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877416

RESUMEN

BACKGROUND: Forest geneticists typically use provenances to account for population differences in their improvement schemes; however, the historical records of the imported materials might not be very precise or well-aligned with the genetic clusters derived from advanced molecular techniques. The main objective of this study was to assess the impact of marker-based population structure on genetic parameter estimates related to growth and wood properties and their trade-offs in Norway spruce, by either incorporating it as a fixed effect (model-A) or excluding it entirely from the analysis (model-B). RESULTS: Our results indicate that models incorporating population structure significantly reduce estimates of additive genetic variance, resulting in substantial reduction of narrow-sense heritability. However, these models considerably improve prediction accuracies. This was particularly significant for growth and solid-wood properties, which showed to have the highest population genetic differentiation (QST) among the studied traits. Additionally, although the pattern of correlations remained similar across the models, their magnitude was slightly lower for models that included population structure as a fixed effect. This suggests that selection, consistently performed within populations, might be less affected by unfavourable genetic correlations compared to mass selection conducted without pedigree restrictions. CONCLUSION: We conclude that the results of models properly accounting for population structure are more accurate and less biased compared to those neglecting this effect. This might have practical implications for breeders and forest managers where, decisions based on imprecise selections can pose a high risk to economic efficiency.


Asunto(s)
Picea , Madera , Picea/genética , Picea/crecimiento & desarrollo , Madera/genética , Marcadores Genéticos/genética , Modelos Genéticos , Genética de Población/métodos , Variación Genética/genética
6.
Plant Sci ; 346: 112139, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38838990

RESUMEN

Dipterocarp species dominate tropical forest ecosystems and provide key ecological and economic value through their use of aromatic resins, medicinal chemicals, and high-quality timber. However, habitat loss and unsustainable logging have endangered many Dipterocarpaceae species. Genomic strategies provide new opportunities for both elucidating the molecular pathways underlying these desirable traits and informing conservation efforts for at-risk taxa. This review summarizes the progress in dipterocarp genomics analysis and applications. We describe 16 recently published Dipterocarpaceae genome sequences, representing crucial genetic blueprints. Phylogenetic comparisons delineate evolutionary relationships among species and provide frameworks for pinpointing functional changes underlying specialized metabolism and wood development patterns. We also discuss connections revealed thus far between specific gene families and both oleoresin biosynthesis and wood quality traits-including the identification of key terpenoid synthases and cellulose synthases likely governing pathway flux. Moreover, the characterization of adaptive genomic markers offers vital resources for supporting conservation practices prioritizing resilient genotypes displaying valuable oleoresin and timber traits. Overall, progress in dipterocarp functional and comparative genomics provides key tools for addressing the intertwined challenges of preserving biodiversity in endangered tropical forest ecosystems while sustainably deriving aromatic chemicals and quality lumber that support diverse human activities.


Asunto(s)
Conservación de los Recursos Naturales , Dipterocarpaceae , Genoma de Planta , Dipterocarpaceae/genética , Dipterocarpaceae/metabolismo , Filogenia , Madera/genética , Genómica , Extractos Vegetales
7.
Protein Pept Lett ; 31(5): 375-385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840406

RESUMEN

BACKGROUND: We studied UPBEAT1 (UPB1) which regulated superoxide radical / hydrogen peroxide ratio together with peroxidase (POD) activity and PAL genes expression under different ways of apical meristem development during the xylem structural elements' formation in unique woody plants B. pendula var. pendula with straight-grained wood and B. pendula var. carelica with figured wood. The differentiation process predominanced in straight-grained wood (B. pendula var. pendula) or proliferation - in the figured wood. The investigation was conducted in the radial row (cambial zone - differentiating xylem - mature xylem) during the active cambial growth period. OBJECTIVE: The study aimed to study the xylogenesis processes occurring in the 16-year-old straight-grained silver birch (Betula pendula Roth) and Karelian birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti) with figured wood. METHODS: Hydrogen peroxide and superoxide radical contents and peroxidase activity were determined spectrophotometrically. Gene expression for PAL family genes and the UPBEAT1 gene was assessed using qRT-PCR. RESULTS: Principal component analysis has confirmed trees with straight-grained and figured wood to be different according to UPBEAT1-ROS-POD-PAL system functioning. CONCLUSION: The higher superoxide radical/hydrogen peroxide ratio in figured Karelian birch, along with UPBEAT1 transcription factor and PAL genes upregulation, distinguished it from straight-grained silver birch. This metabolic picture confirmed the shift of Karelian birch xylogenesis towards proliferation processes, accompanied by ROS and phenolic compounds' flow and POD activity.


Asunto(s)
Betula , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Xilema , Betula/genética , Betula/crecimiento & desarrollo , Betula/metabolismo , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peroxidasa/metabolismo , Peroxidasa/genética , Superóxidos/metabolismo , Madera/metabolismo , Madera/crecimiento & desarrollo , Madera/genética
8.
Plant Physiol ; 196(1): 323-337, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38850037

RESUMEN

Angiosperm trees usually develop tension wood (TW) in response to gravitational stimulation. TW comprises abundant gelatinous (G-) fibers with thick G-layers primarily composed of crystalline cellulose. Understanding the pivotal factors governing G-layer formation in TW fiber remains elusive. This study elucidates the role of a Populus trichocarpa COBRA family protein, PtrCOB3, in the G-layer formation of TW fibers. PtrCOB3 expression was upregulated, and its promoter activity was enhanced during TW formation. Comparative analysis with wild-type trees revealed that ptrcob3 mutants, mediated by Cas9/gRNA gene editing, were incapable of producing G-layers within TW fibers and showed severely impaired stem lift. Fluorescence immunolabeling data revealed a dearth of crystalline cellulose in the tertiary cell wall (TCW) of ptrcob3 TW fibers. The role of PtrCOB3 in G-layer formation is contingent upon its native promoter, as evidenced by the comparative phenotypic assessments of pCOB11::PtrCOB3, pCOB3::PtrCOB3, and pCOB3::PtrCOB11 transgenic lines in the ptrcob3 background. Overexpression of PtrCOB3 under the control of its native promoter expedited G-layer formation within TW fibers. We further identified 3 transcription factors that bind to the PtrCOB3 promoter and positively regulate its transcriptional levels. Alongside the primary TCW synthesis genes, these findings enable the construction of a 2-layer transcriptional regulatory network for the G-layer formation of TW fibers. Overall, this study uncovers mechanistic insight into TW formation, whereby a specific COB protein executes the deposition of cellulose, and consequently, G-layer formation within TW fibers.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Madera , Populus/genética , Populus/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Madera/metabolismo , Madera/genética , Celulosa/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Pared Celular/metabolismo
9.
Int J Biol Macromol ; 268(Pt 1): 131559, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631576

RESUMEN

Expansins are important plant cell wall proteins. They can loosen and soften the cell walls and lead to wall extension and cell expansion. To investigate their role in wood formation and fiber elongation, the PagEXPA1 that highly expressed in cell differentiation and expansion tissues was cloned from 84K poplar (Populus alba × P. glandulosa). The subcellular localization showed that PagEXPA1 located in the cell wall and it was highly expressed in primary stems and young leaves. Compared with non-transgenic 84K poplar, overexpression of PagEXPA1 can promote plant-growth, lignification, and fiber cell elongation, while PagEXPA1 Cas9-editing mutant lines exhibited the opposite phenotype. Transcriptome analysis revealed that DEGs were mainly enriched in some important processes, which are associated with cell wall formation and cellulose synthesis. The protein interaction prediction and expression analysis showed that PagCDKB2:1 and PagEXPA1 might have an interaction relationship. The luciferase complementary assay and bimolecular fluorescence complementary assay validated that PagEXPA1 can combined with PagCDKB2;1. So they promoted the expansion of xylem vascular tissues and the development of poplar though participating in the regulation of cell division and differentiation by programming the cell-cycle. It provides good foundation for molecular breeding of fast-growing and high-quality poplar varieties.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Plantas Modificadas Genéticamente , Perfilación de la Expresión Génica , Xilema/metabolismo , Xilema/genética , Desarrollo de la Planta/genética , Madera/genética , Madera/crecimiento & desarrollo
10.
BMC Plant Biol ; 24(1): 308, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644502

RESUMEN

Acacia melanoxylon is well known as a valuable commercial tree species owing to its high-quality heartwood (HW) products. However, the metabolism and regulatory mechanism of heartwood during wood development remain largely unclear. In this study, both microscopic observation and content determination proved that total amount of starches decreased and phenolics and flavonoids increased gradually from sapwood (SW) to HW. We also obtained the metabolite profiles of 10 metabolites related to phenolics and flavonoids during HW formation by metabolomics. Additionally, we collected a comprehensive overview of genes associated with the biosynthesis of sugars, terpenoids, phenolics, and flavonoids using RNA-seq. A total of ninety-one genes related to HW formation were identified. The transcripts related to plant hormones, programmed cell death (PCD), and dehydration were increased in transition zone (TZ) than in SW. The results of RT-PCR showed that the relative expression level of genes and transcription factors was also high in the TZ, regardless of the horizontal or vertical direction of the trunk. Therefore, the HW formation took place in the TZ for A. melanoxylon from molecular level, and potentially connected to plant hormones, PCD, and cell dehydration. Besides, the increased expression of sugar and terpenoid biosynthesis-related genes in TZ further confirmed the close connection between terpenoid biosynthesis and carbohydrate metabolites of A. melanoxylon. Furthermore, the integrated analysis of metabolism data and RNA-seq data showed the key transcription factors (TFs) regulating flavonoids and phenolics accumulation in HW, including negative correlation TFs (WRKY, MYB) and positive correlation TFs (AP2, bZIP, CBF, PB1, and TCP). And, the genes and metabolites from phenylpropanoid and flavonoid metabolism and biosynthesis were up-regulated and largely accumulated in TZ and HW, respectively. The findings of this research provide a basis for comprehending the buildup of metabolites and the molecular regulatory processes of HW formation in A. melanoxylon.


Asunto(s)
Acacia , Flavonoides , Perfilación de la Expresión Génica , Madera , Acacia/genética , Acacia/metabolismo , Flavonoides/metabolismo , Flavonoides/biosíntesis , Madera/genética , Madera/metabolismo , Metabolómica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Fenoles/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
11.
BMC Genomics ; 25(1): 372, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627613

RESUMEN

BACKGROUND: Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio's SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. RESULTS: We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA's role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. CONCLUSIONS: This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding.


Asunto(s)
Dalbergia , ARN Largo no Codificante , Madera/genética , Madera/metabolismo , Dalbergia/genética , Dalbergia/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , RNA-Seq , Empalme Alternativo , Isoformas de Proteínas/genética , Terpenos/metabolismo
12.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674126

RESUMEN

Toona ciliata, also known as Chinese mahogany, is a high-quality and fast-growing wood species with a high economic value. The wood properties of T. ciliata of different provenances vary significantly. In this study, we conducted comprehensive transcriptome and metabolome analyses of red and non-red T. ciliata wood cores of different provenances to compare their wood properties and explore the differential metabolites and genes that govern the variation in their wood properties. Through combined analyses, three differential genes and two metabolites were identified that are possibly related to lignin synthesis. The lignin content in wood cores from T. ciliata of different provenances shows significant variation following systematic measurement and comparisons. The gene Tci09G002190, one of the three differential genes, was identified as a member of the CAD (Cinnamyl alcohol dehydrogenase) gene family of T. ciliata, which is associated with lignin synthesis. Our data provide insights into the determinants of the wood properties in T. ciliata, providing a solid foundation for research into the subsequent mechanisms of the formation of T. ciliata wood.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Metaboloma , Transcriptoma , Madera , Madera/metabolismo , Madera/genética , Lignina/biosíntesis , Lignina/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo
13.
Plant Sci ; 343: 112058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38447913

RESUMEN

The NF-Y gene family in plants plays a crucial role in numerous biological processes, encompassing hormone response, stress response, as well as growth and development. In this study, we first used bioinformatics techniques to identify members of the NF-YA family that may function in wood formation. We then used molecular biology techniques to investigate the role and molecular mechanism of PtrNF-YA6 in secondary cell wall (SCW) formation in Populus trichocarpa. We found that PtrNF-YA6 protein was localized in the nucleus and had no transcriptional activating activity. Overexpression of PtrNF-YA6 had an inhibitory effect on plant growth and development and significantly suppressed hemicellulose synthesis and SCW thickening in transgenic plants. Yeast one-hybrid and ChIP-PCR assays revealed that PtrNF-YA6 directly regulated the expression of hemicellulose synthesis genes (PtrGT47A-1, PtrGT8C, PtrGT8F, PtrGT43B, PtrGT47C, PtrGT8A and PtrGT8B). In conclusion, PtrNF-YA6 can inhibit plant hemicellulose synthesis and SCW thickening by regulating the expression of downstream SCW formation-related target genes.


Asunto(s)
Populus , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Madera/genética , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
14.
Plant Biotechnol J ; 22(8): 2201-2215, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38492213

RESUMEN

Wood formation, which occurs mainly through secondary xylem development, is important not only for supplying raw material for the 'ligno-chemical' industry but also for driving the storage of carbon. However, the complex mechanisms underlying the promotion of xylem formation remain to be elucidated. Here, we found that overexpression of Auxin-Regulated Gene involved in Organ Size (ARGOS) in hybrid poplar 84 K (Populus alba × Populus tremula var. glandulosa) enlarged organ size. In particular, PagARGOS promoted secondary growth of stems with increased xylem formation. To gain further insight into how PagARGOS regulates xylem development, we further carried out yeast two-hybrid screening and identified that the auxin transporter WALLS ARE THIN1 (WAT1) interacts with PagARGOS. Overexpression of PagARGOS up-regulated WAT1, activating a downstream auxin response promoting cambial cell division and xylem differentiation for wood formation. Moreover, overexpressing PagARGOS caused not only higher wood yield but also lower lignin content compared with wild-type controls. PagARGOS is therefore a potential candidate gene for engineering fast-growing and low-lignin trees with improved biomass production.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Proteínas de Plantas , Populus , Madera , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Lignina/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Madera/metabolismo , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Ácidos Indolacéticos/metabolismo
15.
Plant Genome ; 17(2): e20446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38528365

RESUMEN

MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica de las Plantas , MicroARNs , Tallos de la Planta , Populus , Xilema , Populus/genética , Populus/crecimiento & desarrollo , MicroARNs/genética , Xilema/genética , Xilema/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , ARN de Planta/genética , Madera/genética
16.
Plant Cell ; 36(5): 1806-1828, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339982

RESUMEN

Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.


Asunto(s)
Cámbium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Factores de Transcripción , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo , Proliferación Celular , Madera/crecimiento & desarrollo , Madera/metabolismo , Madera/genética
17.
Ann Bot ; 133(7): 953-968, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38366549

RESUMEN

BACKGROUND AND AIMS: Secondary cell wall (SCW) thickening is a major cellular developmental stage determining wood structure and properties. Although the molecular regulation of cell wall deposition during tracheary element differentiation has been well established in primary growth systems, less is known about the gene regulatory processes involved in the multi-layered SCW thickening of mature trees. METHODS: Using third-generation [long-read single-molecule real-time (SMRT)] and second-generation [short-read sequencing by synthesis (SBS)] sequencing methods, we established a Pinus bungeana transcriptome resource with comprehensive functional and structural annotation for the first time. Using these approaches, we generated high spatial resolution datasets for the vascular cambium, xylem expansion regions, early SCW thickening, late SCW thickening and mature xylem tissues of 71-year-old Pinus bungeana trees. KEY RESULTS: A total of 79 390 non-redundant transcripts, 31 808 long non-coding RNAs and 5147 transcription factors were annotated and quantified in different xylem tissues at all growth and differentiation stages. Furthermore, using this high spatial resolution dataset, we established a comprehensive transcriptomic profile and found that members of the NAC, WRKY, SUS, CESA and LAC gene families are major players in early SCW formation in tracheids, whereas members of the MYB and LBD transcription factor families are highly expressed during late SCW thickening. CONCLUSIONS: Our results provide new molecular insights into the regulation of multi-layered SCW thickening in conifers. The high spatial resolution datasets provided can serve as important gene resources for improving softwoods.


Asunto(s)
Pared Celular , Pinus , Xilema , Pared Celular/genética , Pared Celular/metabolismo , Pinus/genética , Pinus/crecimiento & desarrollo , Xilema/genética , Xilema/crecimiento & desarrollo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Madera/genética , Madera/crecimiento & desarrollo , Madera/anatomía & histología
18.
Sci Rep ; 14(1): 5058, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424163

RESUMEN

Curly (Karelian) birch is a special variety of Betula pendula Roth distributed in the northwestern part of Europe. Karelian birch is well-known for its valuable figured curly wood also known as "wooden marble". The genetic basis underlying curly wood formation has been debated since last century, however, there was no data about loci responsible for the curly wood trait. In the present study, we analyzed two full-sibs populations derived from experimental crosses of curly birches and segregating for the trait. RADseq genotyping was applied to reveal how many loci are involved in 'curliness' formation and to search for genetic variants associated with this trait. One single interval on chromosome 10 was detected containing possible candidate genes. InDel marker BpCW1 was suggested for the first time for marker-assisted selection of trees with curly wood at their earliest stages of development.


Asunto(s)
Betula , Madera , Betula/genética , Genotipo , Madera/genética , Fenotipo
19.
Mol Biol Rep ; 51(1): 169, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252339

RESUMEN

BACKGROUND: Teak (Tectona grandis L.f.), an important source of tropical timber with immense economic value, is a highly outcrossing forest tree species. 150 unrelated accessions of teak (Tectona grandis L.f.) plus trees assembled as clones at National Teak Germplasm Bank, Chandrapur, Maharashtra, India was investigated for association mapping of candidate lignin biosynthesis gene (CAD1) and transcription factors (MYB1 and MYB2). METHODS AND RESULTS: The CAD1, MYB1 and MYB2 were amplified using specifically designed primers. The amplified sequences were then sequenced and genotyped for 112 SNPs/11 indels. We evaluated the association between SNPs and wood density in teak accessions using GLM and MLM statistical models, with Bonferroni correction applied. The teak accessions recorded an average wood density of 416.69 kg.m-3 (CV 4.97%) and comprised of three loosely structured admixed sub-populations (K = 3), containing 72.05% genetic variation within sub-populations with low intragenic LD (0-21% SNP pairs) at P < 0.05 and high LD decay (33-934 bp) at R2 = 0.1. GLM and MLM models discounting systematic biases (Q and K matrices) to avoid false discovery revealed five loci at rare variants (MAF 0.003) and three loci at common variants (MAF 0.05) to be significantly (P < 0.05) associated with the wood density. However, the stringent Bonferroni correction (4.06-7.04 × 10-4) yielded only a single associated locus (B1485C/A) from exon of MYB1 transcription factor, contributing to about 10.35% phenotypic variation in wood density trait. CONCLUSION: Scored SNP locus (B1485C/A) can be developed as a molecular probe for selection of improved planting stock with proven wood density trait for a large-scale teak plantation.


Asunto(s)
Lamiaceae , Factores de Transcripción , Factores de Transcripción/genética , Madera/genética , Genotipo , Lignina/genética , Polimorfismo de Nucleótido Simple/genética , India
20.
Trends Plant Sci ; 29(2): 111-113, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37838517

RESUMEN

Wood is an abundant and renewable feedstock for pulping and biorefining, but the aromatic polymer lignin greatly limits its efficient use. Sulis et al. recently reported a multiplex CRISPR editing strategy targeting multiple lignin biosynthetic genes to achieve combined lignin modifications, improve wood properties, and make pulping more sustainable.


Asunto(s)
Edición Génica , Lignina , Lignina/genética , Madera/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA