Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.650
1.
J Appl Oral Sci ; 32: e20230440, 2024.
Article En | MEDLINE | ID: mdl-38775557

This study aimed to compare the quality of root canal obturation (ratio of area occupied by gutta-percha (G), sealer (S), and presence of voids (V)) in different anatomical irregularities (intercanal communications, lateral irregularities, and accessory canals) located at different thirds of the root canal system of mandibular molar replicas. Sixty-seven 3D printed replicas of an accessed mandibular molar were prepared using ProGlider and ProTaper Gold rotatory systems. Three specimens were randomly selected to be used as controls and did not receive further treatment. The rest were randomly distributed in 4 experimental groups to be obturated using either cold lateral compaction (LC), continuous wave of condensation (CW), and core-carrier obturation (ThermafilPlus (TH) or GuttaCore (GC)) (n=16 per group). AHPlus® sealer was used in all groups. The three controls and a specimen from each experimental group were scanned using micro-computed tomography. The rest of the replicas were sectioned at the sites of anatomical irregularities and examined at 30× magnification. The G, S, and V ratios were calculated dividing the area occupied with each element by the total root canal area and then compared among groups using the Kruskal-Wallis test. Voids were present in all obturation techniques with ratios from 0.01 to 0.15. CW obtained a significantly higher G ratio in the irregularity located in the coronal third (0.882) than LC (0.681), TH (0.773), and GC (0.801) (p<0.05). TH and GC achieved significantly higher G ratios in those located in the apical third (p<0.05). The worst quality of obturation was observed in the loop accessory canal with all obturation techniques. Whitin the limitations of this study, it can be concluded that CW and core-carrier obturation are respectively the most effective techniques for obturating anatomical irregularities located in the coronal and the apical third.


Dental Pulp Cavity , Gutta-Percha , Materials Testing , Root Canal Filling Materials , Root Canal Obturation , X-Ray Microtomography , Root Canal Obturation/methods , Root Canal Filling Materials/chemistry , X-Ray Microtomography/methods , Gutta-Percha/chemistry , Dental Pulp Cavity/anatomy & histology , Dental Pulp Cavity/diagnostic imaging , Humans , Reproducibility of Results , Reference Values , Molar/anatomy & histology , Epoxy Resins/chemistry , Printing, Three-Dimensional , Surface Properties , Statistics, Nonparametric , Random Allocation
2.
Braz Dent J ; 35: e245461, 2024.
Article En | MEDLINE | ID: mdl-38775590

This study aimed to evaluate the osteogenic potential of hydroxyapatite (HA), Alginate (Alg), and Gelatine (Gel) composite in a critical-size defect model in rats. Twenty-four male rats were divided into three groups: a negative control with no treatment (Control group), a positive control treated with deproteinized bovine bone mineral (DBBM group), and the experimental group treated with the new HA-Alg-Gel composite (HA-Alg-Gel group). A critical size defect (8.5mm) was made in the rat's calvaria, and the bone formation was evaluated by in vivo microcomputed tomography analysis (µCT) after 1, 15, 45, and 90 days. After 90 days, the animals were euthanized and histological and histomorphometric analyses were performed. A higher proportion of mineralized tissue/biomaterial was observed in the DBBM group when compared to the HA-Alg-Gel and Control groups in the µCT analysis during all analysis periods. However, no differences were observed in the mineralized tissue/biomaterial proportion observed on day 1 (immediate postoperative) in comparison to later periods of analysis in all groups. In the histomorphometric analysis, the HA-Alg-Gel and Control groups showed higher bone formation than the DBBM group. Moreover, in histological analysis, five samples of the HA-Alg-Gal group exhibited formed bone spicules adjacent to the graft granules against only two of eight samples in the DBBM group. Both graft materials ensured the maintenance of defect bone thickness, while a tissue thickness reduction was observed in the control group. In conclusion, this study demonstrated the osteoconductive potential of HA-Alg-Gel bone graft by supporting new bone formation around its particles.


Alginates , Bone Regeneration , Durapatite , Gelatin , Skull , X-Ray Microtomography , Animals , Bone Regeneration/drug effects , Durapatite/pharmacology , Skull/surgery , Skull/diagnostic imaging , Rats , Male , Biocompatible Materials , Glucuronic Acid , Rats, Wistar , Hexuronic Acids , Osteogenesis/drug effects , Bone Substitutes
3.
J Vis Exp ; (206)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38738893

The mechanical property, microhardness, is evaluated in dental enamel, dentin, and bone in oral disease models, including dental fluorosis and periodontitis. Micro-CT (µCT) provides 3D imaging information (volume and mineral density) and scanning electron microscopy (SEM) produces microstructure images (enamel prism and bone lacuna-canalicular). Complementarily to structural analysis by µCT and SEM, microhardness is one of the informative parameters to evaluate how structural changes alter mechanical properties. Despite being a useful parameter, studies on microhardness of alveolar bone in oral diseases are limited. To date, divergent microhardness measurement methods have been reported. Since microhardness values vary depending on the sample preparation (polishing and flat surface) and indentation sites, diverse protocols can cause discrepancies among studies. Standardization of the microhardness protocol is essential for consistent and accurate evaluation in oral disease models. In the present study, we demonstrate a standardized protocol for microhardness analysis in tooth and alveolar bone. Specimens used are as follows: for the dental fluorosis model, incisors were collected from mice treated with/without fluoride-containing water for 6 weeks; for ligature-induced periodontal bone resorption (L-PBR) model, alveolar bones with periodontal bone resorption were collected from mice ligated on the maxillary 2nd molar. At 2 weeks after the ligation, the maxilla was collected. Vickers hardness was analyzed in these specimens according to the standardized protocol. The protocol provides detailed materials and methods for resin embedding, serial polishing, and indentation sites for incisors and alveolar. To the best of our knowledge, this is the first standardized microhardness protocol to evaluate the mechanical properties of tooth and alveolar bone in rodent oral disease models.


Alveolar Process , Disease Models, Animal , X-Ray Microtomography , Animals , Mice , Alveolar Process/diagnostic imaging , X-Ray Microtomography/methods , Fluorosis, Dental/diagnostic imaging , Fluorosis, Dental/pathology , Hardness , Incisor/diagnostic imaging , Tooth/diagnostic imaging
4.
Geobiology ; 22(3): e12601, 2024.
Article En | MEDLINE | ID: mdl-38725142

While stromatolites, and to a lesser extent thrombolites, have been extensively studied in order to unravel Precambrian (>539 Ma) biological evolution, studies of clastic-dominated microbially induced sedimentary structures (MISS) are relatively scarce. The lack of a consolidated record of clastic microbialites creates questions about how much (and what) information on depositional and taphonomic settings can be gleaned from these fossils. We used µCT scanning, a non-destructive X-ray-based 3D imaging method, to reconstruct morphologies of ancient MISS and mat textures in two previously described coastal Archaean samples from the ~3.48 Ga Dresser Formation, Pilbara, Western Australia. The aim of this study was to test the ability of µCT scanning to visualize and make 3D measurements that can be used to interpret the biotic-environmental interactions. Fossil MISS including mat laminae with carpet-like textures in one sample and mat rip-up chips in the second sample were investigated. Compiled δ13C and δ34S analyses of specimens from the Dresser Fm. are consistent with a taxonomically diverse community that could be capable of forming such MISS. 3D measurements of fossil microbial mat chips indicate significant biostabilization and suggest formation in flow velocities >25 cm s-1. Given the stratigraphic location of these chips in a low-flow lagoonal layer, we conclude that these chips formed due to tidal influence, as these assumed velocities are consistent with recent modeling of Archaean tides. The success of µCT scanning in documenting these microbialite features validates this technique both as a first step analysis for rare samples prior to the use of more destructive techniques and as a valuable tool for gaining insight into microbialite taphonomy.


Fossils , Geologic Sediments , Imaging, Three-Dimensional , X-Ray Microtomography , Geologic Sediments/microbiology , Western Australia , Archaea
5.
Sci Justice ; 64(3): 297-304, 2024 May.
Article En | MEDLINE | ID: mdl-38735666

Child abuse is a serious concern that can cause the death of a child. In such cases the medico-legal evidence is often pivotal but complex, drawing across multiple medical disciplines and techniques. One key specialism is histopathology, which is considered the gold standard for estimating the age of individual fractures. Another is micro-CT imaging, which can visualise the location of trauma across the body. This case report demonstrates how micro-CT was used to contextualise the histological evidence in the Criminal Justice Proceedings of a fatal child abuse case. This was achieved by overlaying the aged fracture evidence from histopathology onto the visuals rendered from micro-CT imaging. The case was a suspected child abuse of a deceased 1-month old infant who was reported unresponsive by their parents. The child was taken to hospital where they were pronounced dead. Suspicion was raised and post-mortem imaging confirmed head trauma and rib fractures, and the case was escalated for a forensic investigation. This case report details how the micro-CT imaging was merged with the gold standard of histopathology for visualisation of trauma, and how the court presentation was planned alongside Senior Investigating Officers and various medical experts. The presentation was used in court by the histopathologist to present the evidence. The resulting presentation provided additional clarity to jury members regarding the location, severity, frequency, and timings of the injuries. From the perspective of the investigating police force, the resulting presentation was crucial in ensuring understanding of the medico-legal evidence of how the infant died. The prosecuting lawyer noted that combining the histological and micro-CT evidence in this way allowed the evidence to be presented in a sensitive, clear, and impactful manner.


Child Abuse , Rib Fractures , X-Ray Microtomography , Humans , Child Abuse/diagnosis , Infant , Rib Fractures/diagnostic imaging , Rib Fractures/pathology , Male , Forensic Pathology/methods
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731827

The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230-430 µm as primary pores, 40-70 µm as secondary inner microchannels, and 200-400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation.


Bone Regeneration , Tibia , Tissue Scaffolds , Animals , Dogs , Tissue Scaffolds/chemistry , Tibia/diagnostic imaging , Pilot Projects , Osteogenesis , Porosity , X-Ray Microtomography , Durapatite , Bone Transplantation/methods , Bone Substitutes
7.
BMC Oral Health ; 24(1): 528, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702714

OBJECTIVES: To evaluate in the absence of teeth the variability of the mylohyoid line (ML), the microarchitecture of the adjacent bone, and whether the variable prominence/width of the ML is associated with the quality of the adjacent bone. METHODS: µCT scans of 28 human mandibles from anatomical specimens were analyzed. The following parameters were assessed in four edentulous areas (first and second premolar (PM), first, second, and third molar (M1/2/3)): ML width, cortical thickness (CtTh), average cortical- (Avg.Ct.BV/TV), and trabecular bone volume fraction (Avg.Tb.BV/TV). RESULTS: The ML width increased from the PM towards the M2 region, which also showed the highest variance (range: 0.4-10.2 mm). The CtTh showed a decrease in the M3 region, while Avg.Ct.BV/TV and Avg.Tb.BV/TV hardly differed among the regions. In the multivariable model on the effect of the various parameters on the ML width, only gender and tooth region were significant. Specifically, male specimens were associated with a wider ML width compared to female specimens and the M2 region was associated with a wider ML width compared to the other tooth regions. CONCLUSION: The ML width was not associated with the cortical and trabecular bone quality in the adjacent bone, while gender and tooth region had a significant effect. Specifically, the ML width was lower in female, but peaked in the M2 region with a median width of 3-4 mm. CLINICAL RELEVANCE: From a clinical point of view, it was confirmed that the ML is in general a highly variable structure, especially in the M2 region, but the ML width does not allow any conclusions on the bone quality. Altogether, this underlines the need for an individual and accurate diagnostic prior to any surgical intervention.


Mandible , X-Ray Microtomography , Humans , Male , Female , Mandible/diagnostic imaging , Mandible/anatomy & histology , Aged , Alveolar Process/diagnostic imaging , Alveolar Process/pathology , Alveolar Process/anatomy & histology , Middle Aged , Jaw, Edentulous/diagnostic imaging , Jaw, Edentulous/pathology
8.
PLoS One ; 19(5): e0302646, 2024.
Article En | MEDLINE | ID: mdl-38709766

The analysis of the DNA entrapped in ancient shells of molluscs has the potential to shed light on the evolution and ecology of this very diverse phylum. Ancient genomics could help reconstruct the responses of molluscs to past climate change, pollution, and human subsistence practices at unprecedented temporal resolutions. Applications are however still in their infancy, partly due to our limited knowledge of DNA preservation in calcium carbonate shells and the need for optimized methods for responsible genomic data generation. To improve ancient shell genomic analyses, we applied high-throughput DNA sequencing to 27 Mytilus mussel shells dated to ~111-6500 years Before Present, and investigated the impact, on DNA recovery, of shell imaging, DNA extraction protocols and shell sub-sampling strategies. First, we detected no quantitative or qualitative deleterious effect of micro-computed tomography for recording shell 3D morphological information prior to sub-sampling. Then, we showed that double-digestion and bleach treatment of shell powder prior to silica-based DNA extraction improves shell DNA recovery, also suggesting that DNA is protected in preservation niches within ancient shells. Finally, all layers that compose Mytilus shells, i.e., the nacreous (aragonite) and prismatic (calcite) carbonate layers, with or without the outer organic layer (periostracum) proved to be valuable DNA reservoirs, with aragonite appearing as the best substrate for genomic analyses. Our work contributes to the understanding of long-term molecular preservation in biominerals and we anticipate that resulting recommendations will be helpful for future efficient and responsible genomic analyses of ancient mollusc shells.


Animal Shells , Genomics , Mollusca , Animals , Genomics/methods , Mollusca/genetics , X-Ray Microtomography , Calcium Carbonate , High-Throughput Nucleotide Sequencing , Fossils
9.
BMC Med Imaging ; 24(1): 101, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693510

Bone strength depends on both mineral content and bone structure. Measurements of bone microstructure on specimens can be performed by micro-CT. In vivo measurements are reliably performed by high-resolution peripheral computed tomography (HR-pQCT) using dedicated software. In previous studies from our research group, trabecular bone properties on CT data of defatted specimens from many different CT devices have been analyzed using an Automated Region Growing (ARG) algorithm-based code, showing strong correlations to micro-CT.The aim of the study was to validate the possibility of segmenting and measuring trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens. Data from micro-CT was used as reference. The hypothesis was that the ARG-based in-house built software could be used for such measurements.HR-pQCT image data at two resolutions (61 and 82 µm isotropic voxels) from 23 fresh-frozen human forearms were analyzed. Correlations to micro-CT were strong, varying from 0.72 to 0.99 for all parameters except trabecular termini and nodes. The bone volume fraction had correlations varying from 0.95 to 0.98 but was overestimated compared to micro-CT, especially at the lower resolution. Trabecular separation and spacing were the most stable parameters with correlations at 0.80-0.97 and mean values in the same range as micro-CT.Results from this in vitro study show that an ARG-based software could be used for segmenting and measuring 3D trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens using micro-CT data as reference. Over-and underestimation of several of the bone structure parameters must however be taken into account.


Algorithms , Cancellous Bone , X-Ray Microtomography , Humans , Cancellous Bone/diagnostic imaging , Aged , Male , Female , Middle Aged , Wrist/diagnostic imaging , Software , Aged, 80 and over
10.
Sci Rep ; 14(1): 10136, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698049

Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.


Imaging, Three-Dimensional , Multimodal Imaging , Pancreas , Animals , Imaging, Three-Dimensional/methods , Pancreas/diagnostic imaging , Pancreas/blood supply , Swine , Multimodal Imaging/methods , X-Ray Microtomography/methods , Islets of Langerhans/diagnostic imaging , Islets of Langerhans/blood supply , Tomography, X-Ray Computed/methods
11.
Sci Rep ; 14(1): 10071, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698134

Dipsadidae is one of the largest clades of extant reptiles, showing an impressive morphological and ecological diversity. Despite this fact, the developmental processes behind its diversity are still largely unknown. In this study, we used 3D reconstructions based on micro-CT data and geometric morphometrics to evaluate the skull morphology of Philodryas agassizii, a small, surface-dwelling dipsadid that consume spiders. Adult individuals of P. agassizii exhibit a cranial morphology frequently observed in juveniles of other surface-dwelling colubroideans, represented in our analysis by its close relative Philodryas patagoniensis. Large orbits, gibbous neurocranial roof and a relatively short jaw complex are features present in juveniles of the latter species. Furthermore, we performed an extensive survey about diet of P. patagoniensis in which we detected an ontogenetic dietary shift, indicating that arthropods are more frequently consumed by juveniles of this dietary generalist. Thus, we infer that P. agassizzii retained not only the ancestral juvenile skull morphology but also dietary preferences. This study reveals that morphological changes driven by heterochronic changes, specifically paedomorphosis, influenced the retention of ancestral life history traits in P. agassizii, and therefore promoted cladogenesis. In this way, we obtained first evidence that heterochronic processes lead speciation in the snake megadiverse clade Dipsadidae.


Skull , Animals , Skull/anatomy & histology , Diet , Snakes/anatomy & histology , X-Ray Microtomography , Genetic Speciation , Phylogeny , Biological Evolution
12.
Sci Rep ; 14(1): 10227, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702443

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Bone Density , Osteoporosis , Ovariectomy , Wnt Signaling Pathway , Animals , Ovariectomy/adverse effects , Wnt Signaling Pathway/drug effects , Female , Osteoporosis/prevention & control , Osteoporosis/metabolism , Bone Density/drug effects , Rats , Rats, Sprague-Dawley , Egg Yolk/chemistry , Egg Yolk/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Egg Proteins/pharmacology , Egg Proteins/metabolism , Peptides/pharmacology , beta Catenin/metabolism , Alkaline Phosphatase/metabolism , Femur/drug effects , Femur/metabolism , X-Ray Microtomography
13.
Sci Rep ; 14(1): 9977, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693297

This paper investigates trabecular bone ontogenetic changes in two different Polish populations, one prehistoric and the other historical. The studied populations are from the Brzesc Kujawski region in Kujawy (north-central Poland), one from the Neolithic Period (4500-4000 BC) and one from the Middle Ages (twelfth-sixteenth centuries AD), in total 62 vertebral specimens (32 males, 30 females). Eight morphometric parameters acquired from microCT scan images were analysed. Two-way ANOVA after Box-Cox transformation and multifactorial regression model were calculated. A significant decrease in percentage bone volume fraction (BV/TV; [%]) with age at death was observed in the studied sample; Tb.N (trabecular number) was also significantly decreased with age; trabecular separation (Tb.Sp) increased with advancing age; connectivity density (Conn.D) was negatively correlated with biological age and higher in the Neolithic population. These data are found to be compatible with data from the current biomedical literature, while no loss of horizontal trabeculae was recorded as would be expected based on modern osteoporosis.


Cancellous Bone , Humans , Poland , Male , Female , Adult , Cancellous Bone/anatomy & histology , Cancellous Bone/diagnostic imaging , History, Medieval , Middle Aged , Spine/anatomy & histology , Spine/diagnostic imaging , History, Ancient , X-Ray Microtomography , Age Factors , Aged , Bone Density , Sex Factors , Young Adult
14.
Eur Radiol Exp ; 8(1): 58, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735899

BACKGROUND: Chondrosarcomas are rare malignant bone tumors diagnosed by analyzing radiological images and histology of tissue biopsies and evaluating features such as matrix calcification, cortical destruction, trabecular penetration, and tumor cell entrapment. METHODS: We retrospectively analyzed 16 cartilaginous tumor tissue samples from three patients (51-, 54-, and 70-year-old) diagnosed with a dedifferentiated chondrosarcoma at the femur, a moderately differentiated chondrosarcoma in the pelvis, and a predominantly moderately differentiated chondrosarcoma at the scapula, respectively. We combined a hematein-based x-ray staining with high-resolution three-dimensional (3D) microscopic x-ray computed tomography (micro-CT) for nondestructive 3D tumor assessment and tumor margin evaluation. RESULTS: We detected trabecular entrapment on 3D micro-CT images and followed bone destruction throughout the volume. In addition to staining cell nuclei, hematein-based staining also improved the visualization of the tumor matrix, allowing for the distinction between the tumor and the bone marrow cavity. The hematein-based staining did not interfere with further conventional histology. There was a 5.97 ± 7.17% difference between the relative tumor area measured using micro-CT and histopathology (p = 0.806) (Pearson correlation coefficient r = 0.92, p = 0.009). Signal intensity in the tumor matrix (4.85 ± 2.94) was significantly higher in the stained samples compared to the unstained counterparts (1.92 ± 0.11, p = 0.002). CONCLUSIONS: Using nondestructive 3D micro-CT, the simultaneous visualization of radiological and histopathological features is feasible. RELEVANCE STATEMENT: 3D micro-CT data supports modern radiological and histopathological investigations of human bone tumor specimens. It has the potential for being an integrative part of clinical preoperative diagnostics. KEY POINTS: • Matrix calcifications are a relevant diagnostic feature of bone tumors. • Micro-CT detects all clinically diagnostic relevant features of x-ray-stained chondrosarcoma. • Micro-CT has the potential to be an integrative part of clinical diagnostics.


Bone Neoplasms , Chondrosarcoma , Feasibility Studies , Imaging, Three-Dimensional , X-Ray Microtomography , Humans , Chondrosarcoma/diagnostic imaging , Chondrosarcoma/pathology , X-Ray Microtomography/methods , Aged , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Middle Aged , Retrospective Studies , Imaging, Three-Dimensional/methods , Male , Female , Staining and Labeling/methods
15.
Int J Implant Dent ; 10(1): 24, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722448

PURPOSE: The objective of the present study was to ascertain the effect of immediate occlusal loading after implant placement on osseointegration and the micro/nanostructure of the surrounding bone. METHODS: After extraction of a rat maxillary right second molar, an implant was placed immediately with initial fixation (2 N< ). The implants were placed to avoid occlusal loading due to mastication, and in the loaded group, a superstructure was fabricated and subjected to occlusal loading. Bone morphometry, collagen fiber anisotropy, and biological apatite (BAp) crystallite alignment were quantitatively evaluated in both groups after extraction and fixation of the jaw bone at Days 7 and 21 after surgery. RESULTS: Osseointegration was observed in both groups. Bone morphometry showed significant differences in bone volume, trabecular number, trabecular thickness and bone mineral density (BMD) at Days 21 postoperatively (P < 0.05). A significant difference was also found in the trabecular separation at Days 7 postoperatively (P < 0.05). In the evaluation of collagen fiber anisotropy, collagen fiber bundles running differently from the existing bone were observed in both groups. In terms of BAp crystallite alignment, a specific structure was observed in the reconstructed new bone after implantation, and preferential orientation of BAp crystallite alignment was observed in the longitudinal direction of the implants in the Day 21 postoperative loaded group. CONCLUSION: When sufficient initial fixation is achieved at the time of dental implant placement, then the applied masticatory load may contribute to rapidly achieving not only bone volume, but also adequate bone quality after implant placement.


Immediate Dental Implant Loading , Osseointegration , Animals , Rats , Osseointegration/drug effects , Male , Bone Density/physiology , Dental Implants , Rats, Wistar , Maxilla/surgery , Collagen/metabolism , X-Ray Microtomography
16.
Stem Cell Res Ther ; 15(1): 144, 2024 May 20.
Article En | MEDLINE | ID: mdl-38764077

BACKGROUND: The aim of this study was to evaluate potential synergistic effects of a single, local application of human umbilical cord MSC-derived sEVs in combination with a low dose of recombinant human rhBMP-2 to promote the regeneration of a metaphyseal femoral defect in an osteoporotic rat model. METHODS: 6 weeks after induction of osteoporosis by bilateral ventral ovariectomy and administration of a special diet, a total of 64 rats underwent a distal femoral metaphyseal osteotomy using a manual Gigli wire saw. Defects were stabilized with an adapted Y-shaped mini-locking plate and were subsequently treated with alginate only, or alginate loaded with hUC-MSC-sEVs (2 × 109), rhBMP-2 (1.5 µg), or a combination of sEVs and rhBMP-2 (n = 16 for each group). 6 weeks post-surgery, femora were evaluated by µCT, descriptive histology, and biomechanical testing. RESULTS: Native radiographs and µCT analysis confirmed superior bony union with callus formation after treatment with hUC-MSC-sEVs in combination with a low dose of rhBMP-2. This finding was further substantiated by histology, showing robust defect consolidation 6 weeks after treatment. Torsion testing of the explanted femora revealed increased stiffness after application of both, rhBMP-2 alone, or in combination with sEVs, whereas torque was only significantly increased after treatment with rhBMP-2 together with sEVs. CONCLUSION: The present study demonstrates that the co-application of hUC-MSC-sEVs can improve the efficacy of rhBMP-2 to promote the regeneration of osteoporotic bone defects.


Bone Morphogenetic Protein 2 , Extracellular Vesicles , Femur , Osteoporosis , Recombinant Proteins , Umbilical Cord , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/genetics , Osteoporosis/pathology , Rats , Female , Humans , Femur/pathology , Femur/drug effects , Femur/diagnostic imaging , Umbilical Cord/cytology , Extracellular Vesicles/metabolism , Bone Regeneration/drug effects , Rats, Sprague-Dawley , Transforming Growth Factor beta/pharmacology , Disease Models, Animal , X-Ray Microtomography , Mesenchymal Stem Cells/metabolism
17.
J Clin Pediatr Dent ; 48(3): 139-145, 2024 May.
Article En | MEDLINE | ID: mdl-38755992

The endodontic treatment of immature permanent teeth with necrotic pulp is a significant clinical challenge. The success of regenerative endodontic procedure is highly dependent on disinfection of the root canal and an accurate anatomical knowledge of the root canal. The aim of this study was to use micro-computed tomography (micro-CT) analysis to investigate the configuration of root canals in the upper permanent third maxillary molars with incomplete root development in their coronal, apical and middle third portions. Thirty immature third permanent maxillary molars were scanned using a micro-CT system. Then, we measured the diameters and areas of the root canal in the coronal, middle and apical third of the roots. The ratio between the long and short diameter of each root canal was then calculated and the canals were divided into several groups: round, oval, long oval, flat and irregular. The round configuration was not observed in the distobuccal and mesiobuccal roots in any of their anatomical regions. Oval and long oval canals predominated in the distobuccal root. The greatest variations were observed in the mesiobuccal root, with the ribbon-shaped canal predominating in the middle region and an irregular shape in the apical region. In the coronal region of the palatal canal, the round configuration predominated; in the middle third, we observed an almost equivalent distribution between round and oval configurations; apically, the oval shape predominated. In conclusion, we observed significant complexity and variation in the morphology and configuration of root canals in immature permanent molars, thus generating additional obstacles for the success of regenerative endodontics.


Dental Pulp Cavity , Maxilla , Molar, Third , X-Ray Microtomography , Humans , X-Ray Microtomography/methods , Dental Pulp Cavity/diagnostic imaging , Dental Pulp Cavity/anatomy & histology , Maxilla/diagnostic imaging , Maxilla/anatomy & histology , Molar, Third/diagnostic imaging , Molar, Third/anatomy & histology , Child , Tooth Root/diagnostic imaging , Tooth Root/anatomy & histology
18.
BMC Oral Health ; 24(1): 569, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745274

BACKGROUND: Extracellular matrix (ECM) protein malfunction or defect may lead to temporomandibular joint osteoarthritis (TMJ OA). Dentin sialophophoprotein (DSPP) is a mandibular condylar cartilage ECM protein, and its deletion impacted cell proliferation and other extracellular matrix alterations of postnatal condylar cartilage. However, it remains unclear if long-term loss of function of DSPP leads to TMJ OA. The study aimed to test the hypothesis that long-term haploinsufficiency of DSPP causes TMJ OA. MATERIALS AND METHODS: To determine whether Dspp+/- mice exhibit TMJ OA but no severe tooth defects, mandibles of wild-type (WT), Dspp+/-, and Dspp homozygous (Dspp-/-) mice were analyzed by Micro-computed tomography (micro-CT). To characterize the progression and possible mechanisms of osteoarthritic degeneration over time in Dspp+/- mice over time, condyles of Dspp+/- and WT mice were analyzed radiologically, histologically, and immunohistochemically. RESULTS: Micro-CT and histomorphometric analyses revealed that Dspp+/- and Dspp-/- mice had significantly lower subchondral bone mass, bone volume fraction, bone mineral density, and trabecular thickness compared to WT mice at 12 months. Interestingly, in contrast to Dspp-/- mice which exhibited tooth loss, Dspp+/- mice had minor tooth defects. RNA sequencing data showed that haplodeficency of DSPP affects the biological process of ossification and osteoclast differentiation. Additionally, histological analysis showed that Dspp+/- mice had condylar cartilage fissures, reduced cartilage thickness, decreased articular cell numbers and severe subchondral bone cavities, and with signs that were exaggerated with age. Radiographic data showed an increase in subchondral osteoporosis up to 18 months and osteophyte formation at 21 months. Moreover, Dspp+/- mice showed increased distribution of osteoclasts in the subchondral bone and increased expression of MMP2, IL-6, FN-1, and TLR4 in the mandibular condylar cartilage. CONCLUSIONS: Dspp+/- mice exhibit TMJ OA in a time-dependent manner, with lesions in the mandibular condyle attributed to hypomineralization of subchondral bone and breakdown of the mandibular condylar cartilage, accompanied by upregulation of inflammatory markers.


Extracellular Matrix Proteins , Osteoarthritis , Phosphoproteins , Sialoglycoproteins , Temporomandibular Joint Disorders , X-Ray Microtomography , Animals , Osteoarthritis/pathology , Osteoarthritis/diagnostic imaging , Osteoarthritis/genetics , Mice , Extracellular Matrix Proteins/metabolism , Temporomandibular Joint Disorders/pathology , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/etiology , Temporomandibular Joint Disorders/genetics , Phosphoproteins/genetics , Mandibular Condyle/pathology , Mandibular Condyle/diagnostic imaging , Temporomandibular Joint/pathology , Temporomandibular Joint/diagnostic imaging
19.
Cell ; 187(10): 2502-2520.e17, 2024 May 09.
Article En | MEDLINE | ID: mdl-38729110

Human tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features. Recurrence risk-stratification models were trained on prostate cancer specimens imaged with open-top light-sheet microscopy or microcomputed tomography. By comprehensively capturing 3D morphologies, 3D volume-based prognostication achieves superior performance to traditional 2D slice-based approaches, including clinical/histopathological baselines from six certified genitourinary pathologists. Incorporating greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias, further emphasizing the value of capturing larger extents of heterogeneous morphology.


Imaging, Three-Dimensional , Prostatic Neoplasms , Humans , Imaging, Three-Dimensional/methods , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Male , Prognosis , Deep Learning , X-Ray Microtomography/methods , Supervised Machine Learning
20.
BMC Vet Res ; 20(1): 189, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734649

BACKGROUND: Hydrops fetalis (HF) is fluid accumulation in fetus body cavities and subcutaneous tissue. The condition has been described in various farm and companion animal species, including dogs. Most of cases result from a heart defect. Exact nature of this defect is rarely clarified. CASE PRESENTATION: A newborn, male French bulldog puppy with severe HF underwent a full anatomopathological examination to diagnose the primary cause of HF. Based on the anatomopathological examination, fetal ultrasound, and micro-computed tomography, transposition of the great arteries with hypoplasia of the ascending aorta, aortic arch interruption, ostium secundum atrial septal defect, severe tricuspid valve dysplasia, as well as hypoplasia of pulmonary vessels and lungs were diagnosed. CONCLUSIONS: This is the first report of HF caused by severe, complex congenital heart defects with concurrent pulmonary vessel and lung hypoplasia.


Dog Diseases , Heart Defects, Congenital , Hydrops Fetalis , Lung , X-Ray Microtomography , Animals , Hydrops Fetalis/veterinary , Hydrops Fetalis/diagnostic imaging , Male , Lung/diagnostic imaging , Lung/blood supply , Lung/pathology , Lung/abnormalities , Dog Diseases/diagnostic imaging , Dog Diseases/congenital , Dog Diseases/pathology , Dogs , Heart Defects, Congenital/veterinary , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/complications , X-Ray Microtomography/veterinary , Animals, Newborn
...