Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 610: 113887, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763308

RESUMEN

Over the past 10 years we have been developing a multi-attribute analytical platform that allows for the preparation of milligram amounts of functional, high-pure, and stable Torpedo (muscle-type) nAChR detergent complexes for crystallization purpose. In the present work, we have been able to significantly improve and optimize the purity and yield of nicotinic acetylcholine receptors in detergent complexes (nAChR-DC) without compromising stability and functionality. We implemented new methods in the process, such as analysis and rapid production of samples for future crystallization preparations. Native nAChR was extracted from the electric organ of Torpedo californica using the lipid-like detergent LysoFos Choline 16 (LFC-16), followed by three consecutive steps of chromatography purification. We evaluated the effect of cholesteryl hemisuccinate (CHS) supplementation during the affinity purification steps of nAChR-LFC-16 in terms of receptor secondary structure, stability and functionality. CHS produced significant changes in the degree of ß-secondary structure, these changes compromise the diffusion of the nAChR-LFC-16 in lipid cubic phase. The behavior was reversed by Methyl-ß-Cyclodextrin treatment. Also, CHS decreased acetylcholine evoked currents of Xenopus leavis oocyte injected with nAChR-LFC-16 in a concentration-dependent manner. Methyl-ß-Cyclodextrin treatment do not reverse functionality, however column delipidation produced a functional protein similar to nAChR-LFC-16 without CHS treatment.


Asunto(s)
Ésteres del Colesterol/química , Proteínas de Peces/química , Receptores Nicotínicos/química , Acetilcolina/farmacología , Animales , Detergentes/química , Potenciales Evocados/efectos de los fármacos , Proteínas de Peces/aislamiento & purificación , Proteínas de Peces/metabolismo , Oocitos/fisiología , Conformación Proteica en Lámina beta , Receptores Nicotínicos/aislamiento & purificación , Receptores Nicotínicos/metabolismo , Torpedo/metabolismo , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo , beta-Ciclodextrinas/química
2.
Sci Rep ; 10(1): 52, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919372

RESUMEN

4-Aminopyridine (4AP) is a specific blocker of voltage-gated potassium channels (KV1 family) clinically approved for the symptomatic treatment of patients with multiple sclerosis (MS). It has recently been shown that [18F]3F4AP, a radiofluorinated analog of 4AP, also binds to KV1 channels and can be used as a PET tracer for the detection of demyelinated lesions in rodent models of MS. Here, we investigate four novel 4AP derivatives containing methyl (-CH3), methoxy (-OCH3) as well as trifluoromethyl (-CF3) in the 2 and 3 position as potential candidates for PET imaging and/or therapy. We characterized the physicochemical properties of these compounds (basicity and lipophilicity) and analyzed their ability to block Shaker K+ channel under different voltage and pH conditions. Our results demonstrate that three of the four derivatives are able to block voltage-gated potassium channels. Specifically, 3-methyl-4-aminopyridine (3Me4AP) was found to be approximately 7-fold more potent than 4AP and 3F4AP; 3-methoxy- and 3-trifluoromethyl-4-aminopyridine (3MeO4AP and 3CF34AP) were found to be about 3- to 4-fold less potent than 4AP; and 2-trifluoromethyl-4-AP (2CF34AP) was found to be about 60-fold less active. These results suggest that these novel derivatives are potential candidates for therapy and imaging.


Asunto(s)
4-Aminopiridina/análogos & derivados , Proteínas de Drosophila/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , 4-Aminopiridina/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Concentración de Iones de Hidrógeno , Cinética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Relación Estructura-Actividad , Xenopus laevis/crecimiento & desarrollo
3.
Sci Rep ; 7(1): 15851, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29158540

RESUMEN

The opening of connexin (Cx) hemichannels in the membrane is tightly regulated by calcium (Ca2+) and membrane voltage. Electrophysiological and atomic force microscopy experiments indicate that Ca2+ stabilizes the hemichannel closed state. However, structural data show that Ca2+ binding induces an electrostatic seal preventing ion transport without significant structural rearrangements. In agreement with the closed-state stabilization hypothesis, we found that the apparent Ca2+ sensitivity is increased as the voltage is made more negative. Moreover, the voltage and Ca2+ dependence of the channel kinetics indicate that the voltage sensor movement and Ca2+ binding are allosterically coupled. An allosteric kinetic model in which the Ca2+ decreases the energy necessary to deactivate the voltage sensor reproduces the effects of Ca2+ and voltage in Cx46 hemichannels. In agreement with the model and suggesting a conformational change that narrows the pore, Ca2+ inhibits the water flux through Cx hemichannels. We conclude that Ca2+ and voltage act allosterically to stabilize the closed conformation of Cx46 hemichannels.


Asunto(s)
Canales de Calcio/genética , Señalización del Calcio/genética , Calcio/metabolismo , Conexinas/genética , Animales , Conexinas/metabolismo , Electrofisiología , Humanos , Cinética , Potenciales de la Membrana/genética , Microscopía de Fuerza Atómica , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oocitos/ultraestructura , Ratas , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
4.
J Morphol ; 278(9): 1208-1219, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28503895

RESUMEN

The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal-exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum, Hypsiboas pulchellus, and Xenopus laevis). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal-exposed olfactory epithelium was absent in X. laevis, and best developed in H. pulchellus. In postmetamorphic animals, the olfactory epithelium (air-sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus), whereas the vomeronasal and the middle chamber epithelia (water-sensitive organs) was best developed in X. laevis. A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus. These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis. They also support a role for the larval buccal-exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis, an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral olfactory subsystems across the anuran life cycle.


Asunto(s)
Anuros/crecimiento & desarrollo , Metamorfosis Biológica , Mucosa Olfatoria/crecimiento & desarrollo , Órgano Vomeronasal/crecimiento & desarrollo , Animales , Epitelio/anatomía & histología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Larva/crecimiento & desarrollo , Mucosa Olfatoria/anatomía & histología , Especificidad de la Especie , Órgano Vomeronasal/anatomía & histología , Xenopus laevis/crecimiento & desarrollo
5.
Genesis ; 55(1-2)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095644

RESUMEN

Collective cell migration is essential in many fundamental aspects of normal development, like morphogenesis, organ formation, wound healing, and immune responses, as well as in the etiology of severe pathologies, like cancer metastasis. In spite of the huge amount of data accumulated on cell migration, such a complex process involves many molecular actors, some of which still remain to be functionally characterized. One of these signals is the heterotrimeric G-protein pathway that has been studied mainly in gastrulation movements. Recently we have reported that Ric-8A, a GEF for Gα proteins, plays an important role in neural crest migration in Xenopus development. Xenopus neural crest cells, a highly migratory embryonic cell population induced at the border of the neural plate that migrates extensively in order to differentiate in other tissues during development, have become a good model to understand the dynamics that regulate cell migration. In this review, we aim to provide sufficient evidence supporting how useful Xenopus model with its different tools, such as explants and transplants, paired with improved in vivo imaging techniques, will allow us to tackle the multiple signaling mechanisms involved in neural crest cell migration.


Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Morfogénesis/genética , Xenopus laevis/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Placa Neural/crecimiento & desarrollo , Placa Neural/metabolismo , Transducción de Señal/genética , Xenopus laevis/crecimiento & desarrollo
6.
Mech Dev ; 142: 30-39, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27687541

RESUMEN

Wnt/ß-catenin has been described as crucial for dorsal-ventral and antero-posterior patterning, playing multiple roles at different stages of development. Cholesterol-rich membrane microdomains (CRMMs), cholesterol- and sphingolipid-enriched domains of the plasma membrane, are known as platforms for signaling pathways. Although we have demonstrated the importance of the CRMMs for head development, how they participate in prechordal plate formation and embryo axis patterning remains an open question. Moreover, the participation of the CRMMs in the Wnt/ß-catenin signaling pathway activity in vivo is unclear, particularly during embryonic development. In this study, we demonstrated that CRMMs disruption by methyl-beta-cyclodextrin (MßCD) potentiates the activation of the Wnt/ß-catenin signaling pathway in vitro and in vivo during embryonic development, causing head defects by expanding the Wnt expression domain. Furthermore, we also found that the action of CRMMs depends on the microenvironmental context because it also works in conjunction with dkk1, when dkk1 is overexpressed. Thus, we propose CRMMs as a further mechanism of prechordal plate protection against the Wnt signals secreted by posterolateral cells, complementing the action of secreted antagonists.


Asunto(s)
Tipificación del Cuerpo/genética , Microdominios de Membrana/genética , Proteínas Wnt/genética , beta Catenina/genética , Animales , Colesterol/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo , beta Catenina/metabolismo , beta-Ciclodextrinas/farmacología
7.
Dev Biol ; 408(2): 229-43, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25797152

RESUMEN

Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2(/)3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2(/)3(+) cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2(/)3(+) neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is lost in non-regenerative froglets.


Asunto(s)
Factores de Transcripción SOXB1/fisiología , Regeneración de la Medula Espinal/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/fisiología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Larva/crecimiento & desarrollo , Larva/fisiología , Metamorfosis Biológica , Modelos Animales , Modelos Neurológicos , Neurogénesis , Factores de Transcripción SOXB1/antagonistas & inhibidores , Factores de Transcripción SOXB1/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/genética , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/genética , Xenopus laevis/genética
8.
PLoS Pathog ; 10(9): e1004402, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25255455

RESUMEN

Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs) ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl) and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50) value of around 200 nM, being cooperative (n(H) = 2) for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new, more efficient drugs whilst functional expression of the receptor allows a first stage of testing of their efficacy.


Asunto(s)
Canales de Cloruro/metabolismo , Copépodos/fisiología , Enfermedades de los Peces/metabolismo , Peces/parasitología , Ácido Glutámico/farmacología , Ivermectina/análogos & derivados , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Clonación Molecular , Copépodos/efectos de los fármacos , Electrofisiología , Femenino , Enfermedades de los Peces/genética , Enfermedades de los Peces/parasitología , Peces/crecimiento & desarrollo , Peces/metabolismo , Insecticidas/farmacología , Ivermectina/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Homología de Secuencia de Aminoácido , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
9.
Cell Physiol Biochem ; 29(1-2): 291-302, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22415098

RESUMEN

The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl(-) influx and prevent Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1. This study was designed to analyze the role of WNK3-SPAK interaction in the regulation of CCCs with particular emphasis on NCC. In this study we used the functional expression system of Xenopus laevis oocytes to show that different SPAK binding sites in WNK3 ((241, 872, 1336)RFxV) are required for the kinase to have effects on CCCs. WNK3-F1337A no longer activated NKCC2, but the effects on NCC, NKCC1, and KCC4 were preserved. In contrast, the effects of WNK3 on these cotransporters were prevented in WNK3-F242A. The elimination of F873 had no consequence on WNK3 effects. WNK3 promoted NCC phosphorylation at threonine 58, even in the absence of the unique SPAK binding site of NCC, but this effect was abolished in the mutant WNK3-F242A. Thus, our data support the hypothesis that the effects of WNK3 upon NCC and other CCCs require the interaction and activation of the SPAK kinase. The effect is dependent on one of the three binding sites for SPAK that are present in WNK3, but not on the SPAK binding sites on the CCCs, which suggests that WNK3 is capable of binding both SPAK and CCCs to promote their phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Animales , Sitios de Unión , Células HEK293 , Humanos , Mutación , Oocitos/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
10.
Chem Res Toxicol ; 23(10): 1586-95, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20695457

RESUMEN

The broad spectrum herbicide glyphosate is widely used in agriculture worldwide. There has been ongoing controversy regarding the possible adverse effects of glyphosate on the environment and on human health. Reports of neural defects and craniofacial malformations from regions where glyphosate-based herbicides (GBH) are used led us to undertake an embryological approach to explore the effects of low doses of glyphosate in development. Xenopus laevis embryos were incubated with 1/5000 dilutions of a commercial GBH. The treated embryos were highly abnormal with marked alterations in cephalic and neural crest development and shortening of the anterior-posterior (A-P) axis. Alterations on neural crest markers were later correlated with deformities in the cranial cartilages at tadpole stages. Embryos injected with pure glyphosate showed very similar phenotypes. Moreover, GBH produced similar effects in chicken embryos, showing a gradual loss of rhombomere domains, reduction of the optic vesicles, and microcephaly. This suggests that glyphosate itself was responsible for the phenotypes observed, rather than a surfactant or other component of the commercial formulation. A reporter gene assay revealed that GBH treatment increased endogenous retinoic acid (RA) activity in Xenopus embryos and cotreatment with a RA antagonist rescued the teratogenic effects of the GBH. Therefore, we conclude that the phenotypes produced by GBH are mainly a consequence of the increase of endogenous retinoid activity. This is consistent with the decrease of Sonic hedgehog (Shh) signaling from the embryonic dorsal midline, with the inhibition of otx2 expression and with the disruption of cephalic neural crest development. The direct effect of glyphosate on early mechanisms of morphogenesis in vertebrate embryos opens concerns about the clinical findings from human offspring in populations exposed to GBH in agricultural fields.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/toxicidad , Transducción de Señal/efectos de los fármacos , Tretinoina/metabolismo , Animales , Embrión de Pollo , Glicina/química , Glicina/toxicidad , Proteínas Hedgehog/metabolismo , Herbicidas/química , Humanos , Neurogénesis , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Factores de Transcripción Otx/antagonistas & inhibidores , Factores de Transcripción Otx/metabolismo , Óvulo/efectos de los fármacos , Óvulo/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/toxicidad , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo , Glifosato
11.
Chemosphere ; 78(3): 280-5, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19913875

RESUMEN

Spea multiplicata (New Mexico spadefoot toad) larvae were exposed to 60, 110, and 1000 microg L(-1) perchlorate dissolved in natural surface water to determine risks associated with perchlorate exposure in desert-adapted anurans. Hind- and forelimb development and tail resorption were measured to identify effects of perchlorate exposure. No perchlorate-related effects on snout-vent length, hindlimb length, and proportion metamorphosed were observed in the highest treatment group (positive control; 1000 microg L(-1)) suggesting that either S.multiplicata are not sensitive to the effects of perchlorate at the concentrations tested or that unidentified constituents of natural surface water mitigated perchlorate toxicity. To identify whether surface water mitigated perchlorate toxicity, Xenopuslaevis were exposed to 20 and 60 microg L(-1) perchlorate in surface water and synthetic laboratory prepared water (i.e., FETAX media). X.laevis exposed to perchlorate dissolved in surface water exhibited no perchlorate-related anti-metamorphic effects, whereas X.laevis exposed to perchlorate in FETAX media experienced changes in percent metamorphosing (p<0.001), time to metamorphosis (p<0.001), snout-vent length (p<0.001), and hindlimb length (p<0.001) as compared to FETAX controls. These results suggest that natural surface water can mediate perchlorate effects at concentrations up to 60 microg L(-1) for X.laevis and greater than 1 mg L(-1) for S.multiplicata, potentially due to physicochemical properties of surface water. CAPSULE: This manuscript discusses the effects of perchlorate in natural surface water to S.multiplicata and X.laevis.


Asunto(s)
Anuros/crecimiento & desarrollo , Agua Dulce/química , Metamorfosis Biológica/efectos de los fármacos , Percloratos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Xenopus laevis/crecimiento & desarrollo , Animales , Miembro Posterior/efectos de los fármacos , Miembro Posterior/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , New Mexico
12.
Ecotoxicol Environ Saf ; 55(1): 38-45, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12706392

RESUMEN

Semistatic acute toxicity tests of amphibian larvae (Xenopus laevis and Ambystoma mexicanum) were conducted at different developmental stages and by different methods to establish a simple amphibian-based assay. Test substance was pentachlorophenol sodium salt (PCP-Na). The endpoint was mortality and the 24-, 48-, 72-, and 96-h LC50 values were calculated by probit analysis. Interspecific differences in larval responses were not clear. Larval sensitivity tended to increase with larval age. Newly hatched larvae were most resistant to PCP-Na. During the tests of well-developed larvae, concentrations of dissolved oxygen and PCP-Na in the test solutions greatly dropped owing to uptake by the larvae. Therefore, middle-developed (2-week-old) larvae were most suitable for the test. Toxicity tests for volatile substances would be also possible using 2-week-old larvae in closed vessels. Test individuals should be kept individually to avoid the effects of poisonous skin secretions released from dead larvae.


Asunto(s)
Ambystoma mexicanum/crecimiento & desarrollo , Contaminantes del Agua/toxicidad , Xenopus laevis/crecimiento & desarrollo , Animales , Bioensayo/métodos , Dosificación Letal Mediana , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA