Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Intervalo de año de publicación
1.
Bull World Health Organ ; 95(7): 517-525I, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28670016

RESUMEN

OBJECTIVE: To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. METHODS: We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k-mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. FINDINGS: In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k-mers) of protein fragments on the list. CONCLUSION: We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.


Asunto(s)
Virus Chikungunya/ultraestructura , Bases de Datos de Proteínas , Flavivirus/ultraestructura , Animales , Virus del Dengue/ultraestructura , Virus de la Encefalitis Japonesa (Especie)/ultraestructura , Humanos , Insectos Vectores , Polimorfismo Genético , Virus del Nilo Occidental/ultraestructura , Virus de la Fiebre Amarilla/ultraestructura , Virus Zika/ultraestructura
2.
Clin Lab Med ; 30(1): 237-60, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20513550

RESUMEN

Yellow fever (YF) is a viral disease, endemic to tropical regions of Africa and the Americas, which principally affects humans and nonhuman primates and is transmitted via the bite of infected mosquitoes. Yellow fever virus (YFV) can cause devastating epidemics of potentially fatal, hemorrhagic disease. Despite mass vaccination campaigns to prevent and control these outbreaks, the risk of major YF epidemics, especially in densely populated, poor urban settings, both in Africa and South America, has greatly increased. Consequently, YF is considered an emerging, or reemerging disease of considerable importance. This article comprehensively reviews the history, microbiology, epidemiology, clinical presentation, diagnosis, and treatment of YFV, as well as the vaccines produced to combat YF.


Asunto(s)
Fiebre Amarilla/diagnóstico , Aedes/virología , Animales , Humanos , Insectos Vectores/virología , Replicación Viral , Fiebre Amarilla/epidemiología , Fiebre Amarilla/prevención & control , Fiebre Amarilla/transmisión , Vacuna contra la Fiebre Amarilla/efectos adversos , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/fisiología , Virus de la Fiebre Amarilla/ultraestructura
3.
EMBO J ; 22(11): 2604-13, 2003 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-12773377

RESUMEN

Structures of prM-containing dengue and yellow fever virus particles were determined to 16 and 25 A resolution, respectively, by cryoelectron microscopy and image reconstruction techniques. The closely similar structures show 60 icosahedrally organized trimeric spikes on the particle surface. Each spike consists of three prM:E heterodimers, where E is an envelope glycoprotein and prM is the precursor to the membrane protein M. The pre-peptide components of the prM proteins in each spike cover the fusion peptides at the distal ends of the E glycoproteins in a manner similar to the organization of the glycoproteins in the alphavirus spikes. Each heterodimer is associated with an E and a prM transmembrane density. These transmembrane densities represent either an EE or prMprM antiparallel coiled coil by which each protein spans the membrane twice, leaving the C-terminus of each protein on the exterior of the viral membrane, consistent with the predicted membrane-spanning domains of the unprocessed polyprotein.


Asunto(s)
Flavivirus/química , Flavivirus/ultraestructura , Animales , Línea Celular , Microscopía por Crioelectrón , Virus del Dengue/química , Virus del Dengue/genética , Virus del Dengue/crecimiento & desarrollo , Virus del Dengue/ultraestructura , Flavivirus/genética , Flavivirus/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador , Membrana Dobles de Lípidos/química , Modelos Moleculares , Nucleocápside/química , Nucleocápside/ultraestructura , Virus Sindbis/química , Virus Sindbis/genética , Virus Sindbis/crecimiento & desarrollo , Virus Sindbis/ultraestructura , Proteínas Virales/química , Proteínas Virales/genética , Virus de la Fiebre Amarilla/química , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/crecimiento & desarrollo , Virus de la Fiebre Amarilla/ultraestructura
4.
J Virol Methods ; 106(2): 185-96, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12393149

RESUMEN

In order to obtain a better understanding of the functional mechanisms involved in the fusogenesis of enveloped viruses, the influenza A (X31) and the yellow fever (17DD) virus particles were used to construct a chimeric structure based on their distinct pH requirements for fusion, and the distinct malleability of their nucleocapsids. The malleable nucleocapsid of the influenza A virus particle is characterized by a pleomorphic configuration when observed by electron microscopy. A heat inactivated preparation of X31 virus was used as a lectin to interact with the sialic acid domains present in the 17DD virus envelope. The E spikes of 17DD virus were induced to promote fusion of both envelopes, creating a double genome enveloped structure, the chimeric yellow fever-influenza A virus particle. These chimeric viral particles, originally denominated 'partículas virais quiméricas' (PVQ), were characterized by their infectious capacity for different biological systems. Cell inoculation with PVQ resulted in viral products that showed similar characteristics to those obtained after 17DD virus infections. Our findings open new opportunities towards the understanding of both virus particles and aspects of cellular physiologic quality control. The yellow fever-influenza A chimeric particles, by means of their hybrid composition, should be a valuable tool in the study of cell biology and the function of viral components.


Asunto(s)
Virus de la Influenza A/fisiología , Virus de la Fiebre Amarilla/fisiología , Animales , Células Cultivadas , Embrión de Pollo , Chlorocebus aethiops , Concentración de Iones de Hidrógeno , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/ultraestructura , Nucleocápside , Células Vero , Virus de la Fiebre Amarilla/patogenicidad , Virus de la Fiebre Amarilla/ultraestructura
5.
In. Travassos da Rosa, Amelia P. A; Vasconcelos, Pedro F. C; Travassos da Rosa, Jorge F. S. An Overview of Arbovirology in Brazil and Neighbouring Countries. Belem, Instituto Evandro Chagas, 1998. p.61-70, tab.
Monografía en Inglés | LILACS | ID: lil-248894
6.
Braz J Med Biol Res ; 30(2): 157-68, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9239300

RESUMEN

The yellow fever (YF) virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed.


Asunto(s)
Vectores Genéticos/inmunología , Vacunas Virales/inmunología , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/inmunología , Vacunas Virales/genética , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/ultraestructura
7.
Braz. j. med. biol. res ; 30(2): 157-68, Feb. 1997. ilus, tab
Artículo en Inglés | LILACS | ID: lil-188422

RESUMEN

The yellow fever (YF) virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed.


Asunto(s)
Vectores Genéticos/inmunología , Vacunas Virales/inmunología , Virus de la Fiebre Amarilla/inmunología , Fiebre Amarilla/virología , Vacunas Virales/genética , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/ultraestructura
8.
J Gen Virol ; 69 ( Pt 2): 325-35, 1988 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-3339329

RESUMEN

The morphogenesis of yellow fever virus replication was examined in infected Vero cell cultures. Penetration and uncoating occurred by endocytosis with the formation of coated vesicles, similar to that demonstrated for other enveloped and unenveloped viruses. Inclusion bodies associated with newly formed nucleocapsids were evident in the perinuclear region during the growth cycle. No evidence of RNA synthesis in the vicinity of the inclusion bodies was obtained by autoradiography, suggesting that genome replication and assembly of viral nucleocapsids occur at separate cytoplasmic sites. An excessive proliferation of membrane-bound organelles involving both vacuoles and endoplasmic reticula was the most striking feature of virus-infected cells late in infection. No morphological changes in the appearance of nuclei or mitochondria were detected. Virus release appeared to occur by movement of nascent virions through the proliferated endoplasmic reticula followed by exocytic fusion of virus-containing vesicles with the plasmalemma. A possible mechanism whereby the internal nucleocapsid acquires an outer envelope is discussed.


Asunto(s)
Replicación Viral , Virus de la Fiebre Amarilla/fisiología , Animales , Cápside/ultraestructura , Endocitosis , Exocitosis , Cuerpos de Inclusión Viral/ultraestructura , Membranas Intracelulares/ultraestructura , Morfogénesis , Organoides/ultraestructura , Células Vero/ultraestructura , Virus de la Fiebre Amarilla/ultraestructura
9.
Am J Trop Med Hyg ; 30(5): 1071-7, 1981 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7283005

RESUMEN

The growth and intracytoplasmic development of two yellow fever virus strains (wild and French neurotropic) were studied in Aedes aegypti cells (clone C 17). Despite a longer period of latency for the vaccine virus, infected cells appeared similar. The cisternae of the rough endoplasmic reticulum (RER) were swollen and formed vesicles which contained the virus. This RER appeared to be the predominant locus of viral synthesis and maturation. Cytopathic effect appeared when the cells were filled with vesicles, and it was characterized by cell degeneration and lysis.


Asunto(s)
Aedes/microbiología , Virus de la Fiebre Amarilla/ultraestructura , Aedes/ultraestructura , Animales , Línea Celular , Microscopía Electrónica , Factores de Tiempo , Virus de la Fiebre Amarilla/crecimiento & desarrollo
12.
Adv Neurol ; 12: 459-64, 1975.
Artículo en Inglés | MEDLINE | ID: mdl-1155274

RESUMEN

In experimental yellow fever virus encephalomyelitis of adult albino mice, virions, and virus-associated structures were observed not only inside neuronal perikarya but also within dendrites of varied size. The finding permits the following explanations: (1) either the viral agent is synthesized in the nerve cell bodies and transported intradendritically in a proximodistal direction; or (2) virus morphogenesis takes place in neuronal perikarya and dendrites as well; or (3) both possiblities are equally valid. Some incidental findings were suggestive of virus release at postsynaptic dendrite membranes. They are discussed with reference to a hypothetical long-distance pathway of viral dissemination involving endocytosis of the agent by presynaptic axon terminals, intraaxonal virus decoating, and retrograde axoplasmic transport of the infectious nucleic acid to the cell soma.


Asunto(s)
Sistema Nervioso Central/microbiología , Dendritas/microbiología , Encefalomielitis/microbiología , Fiebre Amarilla/microbiología , Animales , Sistema Nervioso Central/ultraestructura , Encefalomielitis/patología , Cuerpos de Inclusión Viral/ultraestructura , Ratones , Sinapsis/microbiología , Sinapsis/ultraestructura , Fiebre Amarilla/patología , Virus de la Fiebre Amarilla/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...