Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 177
1.
PLoS Pathog ; 17(12): e1010103, 2021 12.
Article En | MEDLINE | ID: mdl-34871329

Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity.


Bacterial Proteins/immunology , Immune Evasion/immunology , Interferon-gamma/biosynthesis , Intraepithelial Lymphocytes/immunology , Yersinia pseudotuberculosis Infections/immunology , Animals , Humans , Mice , Yersinia pseudotuberculosis/immunology
2.
Cell ; 184(23): 5715-5727.e12, 2021 11 11.
Article En | MEDLINE | ID: mdl-34717799

The enteric nervous system (ENS) controls several intestinal functions including motility and nutrient handling, which can be disrupted by infection-induced neuropathies or neuronal cell death. We investigated possible tolerance mechanisms preventing neuronal loss and disruption in gut motility after pathogen exposure. We found that following enteric infections, muscularis macrophages (MMs) acquire a tissue-protective phenotype that prevents neuronal loss, dysmotility, and maintains energy balance during subsequent challenge with unrelated pathogens. Bacteria-induced neuroprotection relied on activation of gut-projecting sympathetic neurons and signaling via ß2-adrenergic receptors (ß2AR) on MMs. In contrast, helminth-mediated neuroprotection was dependent on T cells and systemic production of interleukin (IL)-4 and IL-13 by eosinophils, which induced arginase-expressing MMs that prevented neuronal loss from an unrelated infection located in a different intestinal region. Collectively, these data suggest that distinct enteric pathogens trigger a state of disease or tissue tolerance that preserves ENS number and functionality.


Enteric Nervous System/microbiology , Enteric Nervous System/parasitology , Infections/microbiology , Infections/parasitology , Neurons/pathology , Neuroprotection , Organ Specificity , Yersinia pseudotuberculosis/physiology , Animals , Eosinophils/metabolism , Hematopoietic Stem Cells/metabolism , Immunity , Infections/immunology , Interleukin-13/metabolism , Interleukin-4/metabolism , Macrophages/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Strongyloides/physiology , Strongyloidiasis/genetics , Strongyloidiasis/immunology , Strongyloidiasis/parasitology , Transcriptome/genetics , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/microbiology
3.
Science ; 373(6558)2021 08 27.
Article En | MEDLINE | ID: mdl-34446580

The immune system has evolved in the face of microbial exposure. How maternal infection experienced at distinct developmental stages shapes the offspring immune system remains poorly understood. Here, we show that during pregnancy, maternally restricted infection can have permanent and tissue-specific impacts on offspring immunity. Mechanistically, maternal interleukin-6 produced in response to infection can directly impose epigenetic changes on fetal intestinal epithelial stem cells, leading to long-lasting impacts on intestinal immune homeostasis. As a result, offspring of previously infected dams develop enhanced protective immunity to gut infection and increased inflammation in the context of colitis. Thus, maternal infection can be coopted by the fetus to promote long-term, tissue-specific fitness, a phenomenon that may come at the cost of predisposition to inflammatory disorders.


Colitis/immunology , Immunity , Interleukin-6/immunology , Intestines/immunology , Pregnancy Complications, Infectious/immunology , Th17 Cells/immunology , Yersinia pseudotuberculosis Infections/immunology , Animals , Candidiasis/immunology , Chromatin/metabolism , Epigenesis, Genetic , Epigenome , Female , Fetal Development , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Interleukin-6/blood , Interleukin-6/pharmacology , Intestinal Mucosa/cytology , Intestinal Mucosa/embryology , Intestinal Mucosa/immunology , Intestines/embryology , Intestines/microbiology , Mice , Pregnancy , Prenatal Exposure Delayed Effects , Salmonella Infections, Animal/immunology , Stem Cells/immunology , Stem Cells/physiology , T-Lymphocyte Subsets/immunology
4.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article En | MEDLINE | ID: mdl-34260403

Injection of effector proteins to block host innate immune signaling is a common strategy used by many pathogenic organisms to establish an infection. For example, pathogenic Yersinia species inject the acetyltransferase YopJ into target cells to inhibit NF-κB and MAPK signaling. To counteract this, detection of YopJ activity in myeloid cells promotes the assembly of a RIPK1-caspase-8 death-inducing platform that confers antibacterial defense. While recent studies revealed that caspase-8 cleaves the pore-forming protein gasdermin D to trigger pyroptosis in macrophages, whether RIPK1 activates additional substrates downstream of caspase-8 to promote host defense is unclear. Here, we report that the related gasdermin family member gasdermin E (GSDME) is activated upon detection of YopJ activity in a RIPK1 kinase-dependent manner. Specifically, GSDME promotes neutrophil pyroptosis and IL-1ß release, which is critical for anti-Yersinia defense. During in vivo infection, IL-1ß neutralization increases bacterial burden in wild-type but not Gsdme-deficient mice. Thus, our study establishes GSDME as an important mediator that counteracts pathogen blockade of innate immune signaling.


Immunity, Innate , Macrophages/metabolism , Neoplasm Proteins/metabolism , Neutrophils/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Yersinia pseudotuberculosis/physiology , 3T3 Cells , Animals , Cytokines/metabolism , Host-Pathogen Interactions/immunology , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Pyroptosis , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/microbiology
5.
Microbiol Spectr ; 9(1): e0049621, 2021 09 03.
Article En | MEDLINE | ID: mdl-34319170

Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1ß. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.


Bacterial Proteins/immunology , Cyclooxygenase 2/immunology , Dinoprostone/immunology , Extracellular Signal-Regulated MAP Kinases/immunology , Macrophages/immunology , Mitogen-Activated Protein Kinase Kinases/immunology , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis/immunology , Animals , Bacterial Proteins/genetics , Cyclooxygenase 2/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Host-Pathogen Interactions , Humans , Macrophage Activation , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/genetics , Signal Transduction , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis Infections/immunology
6.
Infect Immun ; 89(8): e0026521, 2021 07 15.
Article En | MEDLINE | ID: mdl-34031132

Primary infection of C57BL/6 mice with the bacterial pathogen Yersinia pseudotuberculosis elicits an unusually large H-2Kb-restricted CD8+ T cell response to the endogenous and protective bacterial epitope YopE69-77. To better understand the basis for this large response, the model OVA257-264 epitope was inserted into YopE in Y. pseudotuberculosis and antigen-specific CD8+ T cells in mice were characterized after foodborne infection with the resulting strain. The epitope YopE69-77 elicited significantly larger CD8+ T cell populations in the small intestine, mesenteric lymph nodes (MLNs), spleen, and liver between 7 and 30 days postinfection, despite residing in the same protein and having an affinity for H-2Kb similar to that of OVA257-264. YopE-specific CD8+ T cell precursors were ∼4.6 times as abundant as OVA-specific precursors in the MLNs, spleens, and other lymph nodes of naive mice, explaining the dominance of YopE69-77 over OVA257-264 at early infection times. However, other factors contributed to this dominance, as the ratio of YopE-specific to OVA-specific CD8+ T cells increased between 7 and 30 days postinfection. We also compared the YopE-specific and OVA-specific CD8+ T cells generated during infection for effector and memory phenotypes. Significantly higher percentages of YopE-specific cells were characterized as short-lived effectors, while higher percentages of OVA-specific cells were memory precursor effectors at day 30 postinfection in spleen and liver. Our results suggest that a large precursor number contributes to the dominance and effector and memory functions of CD8+ T cells generated in response to the protective YopE69-77 epitope during Y. pseudotuberculosis infection of C57BL/6 mice.


Antigens, Bacterial/immunology , CD8-Positive T-Lymphocytes/immunology , Host-Pathogen Interactions/immunology , T-Cell Antigen Receptor Specificity , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Immunologic Memory , Mice , Mice, Inbred C57BL , Yersinia pseudotuberculosis Infections/transmission
7.
PLoS Pathog ; 16(5): e1008576, 2020 05.
Article En | MEDLINE | ID: mdl-32392230

Yersinia suppress neutrophil responses by using a type 3 secretion system (T3SS) to inject 6-7 Yersinia effector proteins (Yops) effectors into their cytoplasm. YopH is a tyrosine phosphatase that causes dephosphorylation of the adaptor protein SKAP2, among other targets in neutrophils. SKAP2 functions in reactive oxygen species (ROS) production, phagocytosis, and integrin-mediated migration by neutrophils. Here we identify essential neutrophil functions targeted by YopH, and investigate how the interaction between YopH and SKAP2 influence Yersinia pseudotuberculosis (Yptb) survival in tissues. The growth defect of a ΔyopH mutant was restored in mice defective in the NADPH oxidase complex, demonstrating that YopH is critical for protecting Yptb from ROS during infection. The growth of a ΔyopH mutant was partially restored in Skap2-deficient (Skap2KO) mice compared to wild-type (WT) mice, while induction of neutropenia further enhanced the growth of the ΔyopH mutant in both WT and Skap2KO mice. YopH inhibited both ROS production and degranulation triggered via integrin receptor, G-protein coupled receptor (GPCR), and Fcγ receptor (FcγR) stimulation. SKAP2 was required for integrin receptor and GPCR-mediated ROS production, but dispensable for degranulation under all conditions tested. YopH blocked SKAP2-independent FcγR-stimulated phosphorylation of the proximal signaling proteins Syk, SLP-76, and PLCγ2, and the more distal signaling protein ERK1/2, while only ERK1/2 phosphorylation was dependent on SKAP2 following integrin receptor activation. These findings reveal that YopH prevents activation of both SKAP2-dependent and -independent neutrophilic defenses, uncouple integrin- and GPCR-dependent ROS production from FcγR responses based on their SKAP2 dependency, and show that SKAP2 is not required for degranulation.


Bacterial Outer Membrane Proteins/immunology , Intracellular Signaling Peptides and Proteins/immunology , Neutrophils/immunology , Protein Tyrosine Phosphatases/immunology , Signal Transduction/immunology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/immunology , Animals , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Neutrophils/pathology , Reactive Oxygen Species/immunology , Signal Transduction/genetics , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/pathology
8.
PLoS Pathog ; 15(12): e1008001, 2019 12.
Article En | MEDLINE | ID: mdl-31869388

The enteropathogen Yersinia pseudotuberculosis and the related plague agent Y. pestis require the Ysc type III secretion system (T3SS) to subvert phagocyte defense mechanisms and cause disease. Yet type III secretion (T3S) in Yersinia induces growth arrest and innate immune recognition, necessitating tight regulation of the T3SS. Here we show that Y. pseudotuberculosis T3SS expression is kept low under anaerobic, iron-rich conditions, such as those found in the intestinal lumen where the Yersinia T3SS is not required for growth. In contrast, the Yersinia T3SS is expressed under aerobic or anaerobic, iron-poor conditions, such as those encountered by Yersinia once they cross the epithelial barrier and encounter phagocytic cells. We further show that the [2Fe-2S] containing transcription factor, IscR, mediates this oxygen and iron regulation of the T3SS by controlling transcription of the T3SS master regulator LcrF. IscR binds directly to the lcrF promoter and, importantly, a mutation that prevents this binding leads to decreased disseminated infection of Y. pseudotuberculosis but does not perturb intestinal colonization. Similar to E. coli, Y. pseudotuberculosis uses the Fe-S cluster occupancy of IscR as a readout of oxygen and iron conditions that impact cellular Fe-S cluster homeostasis. We propose that Y. pseudotuberculosis has coopted this system to sense entry into deeper tissues and induce T3S where it is required for virulence. The IscR binding site in the lcrF promoter is completely conserved between Y. pseudotuberculosis and Y. pestis. Deletion of iscR in Y. pestis leads to drastic disruption of T3S, suggesting that IscR control of the T3SS evolved before Y. pestis split from Y. pseudotuberculosis.


Iron/metabolism , Oxygen/metabolism , Type III Secretion Systems/metabolism , Yersinia pseudotuberculosis Infections/immunology , Animals , Bacterial Proteins/metabolism , Bacterial Secretion Systems/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Promoter Regions, Genetic/genetics , Transcription, Genetic , Yersinia/metabolism , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/metabolism
9.
Infect Immun ; 87(10)2019 10.
Article En | MEDLINE | ID: mdl-31331960

In this study, a novel recombinant attenuated Yersinia pseudotuberculosis PB1+ strain (χ10069) engineered with ΔyopK ΔyopJ Δasd triple mutations was used to deliver a Y. pestis fusion protein, YopE amino acid 1 to 138-LcrV (YopENt138-LcrV), to Swiss Webster mice as a protective antigen against infections by yersiniae. χ10069 bacteria harboring the pYA5199 plasmid constitutively synthesized the YopENt138-LcrV fusion protein and secreted it via the type 3 secretion system (T3SS) at 37°C under calcium-deprived conditions. The attenuated strain χ10069(pYA5199) was manifested by the establishment of controlled infection in different tissues without developing conspicuous signs of disease in histopathological analysis of microtome sections. A single-dose oral immunization of χ10069(pYA5199) induced strong serum antibody titers (log10 mean value, 4.2), secretory IgA in bronchoalveolar lavage (BAL) fluid from immunized mice, and Yersinia-specific CD4+ and CD8+ T cells producing high levels of tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and interleukin 2 (IL-2), as well as IL-17, in both lungs and spleens of immunized mice, conferring comprehensive Th1- and Th2-mediated immune responses and protection against bubonic and pneumonic plague challenges, with 80% and 90% survival, respectively. Mice immunized with χ10069(pYA5199) also exhibited complete protection against lethal oral infections by Yersinia enterocolitica WA and Y. pseudotuberculosis PB1+. These findings indicated that χ10069(pYA5199) as an oral vaccine induces protective immunity to prevent bubonic and pneumonic plague, as well as yersiniosis, in mice and would be a promising oral vaccine candidate for protection against plague and yersiniosis for human and veterinary applications.


Antibodies, Bacterial/biosynthesis , Immunoglobulin A/biosynthesis , Plague Vaccine/administration & dosage , Plague/prevention & control , Recombinant Fusion Proteins/administration & dosage , Yersinia pestis/drug effects , Yersinia pseudotuberculosis Infections/prevention & control , Yersinia pseudotuberculosis/drug effects , Administration, Oral , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Cross Protection , Female , Gene Expression , Humans , Immunization , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Lung/drug effects , Lung/immunology , Lung/microbiology , Male , Mice , Plague/immunology , Plague/microbiology , Plague/mortality , Plague Vaccine/biosynthesis , Plague Vaccine/genetics , Plague Vaccine/immunology , Plasmids/chemistry , Plasmids/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Survival Analysis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vaccines, Synthetic , Yersinia pestis/immunology , Yersinia pestis/pathogenicity , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis Infections/mortality
10.
Front Immunol ; 10: 96, 2019.
Article En | MEDLINE | ID: mdl-30915064

Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y. pseudotuberculosis evolved to such a remarkably virulent pathogen, Y. pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y. pestis infection. A distinguishing characteristic between the two Yersinia species is that Y. pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y. pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y. pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y. pseudotuberculosis into Y. pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.


Cell Adhesion Molecules/immunology , Host-Pathogen Interactions/immunology , Lectins, C-Type/immunology , Lipopolysaccharides/immunology , Plague/immunology , Receptors, Cell Surface/immunology , Yersinia pestis/physiology , Animals , Antigen-Presenting Cells/immunology , Cell Adhesion Molecules/genetics , Cell Line , Female , HeLa Cells , Humans , Lectins, C-Type/genetics , Macrophages/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Cell Surface/genetics , Yersinia pseudotuberculosis/physiology , Yersinia pseudotuberculosis Infections/immunology
11.
J Med Microbiol ; 68(2): 143-147, 2019 Feb.
Article En | MEDLINE | ID: mdl-30648936

BACKGROUND: Despite being a well-known but seldom encountered zoonotic pathogen, diagnosis of Yersinia pseudotuberculosis is not necessarily easy. Infected patients occasionally present with various symptoms resembling Kawasaki disease; thus discriminating the two in the acute phase is challenging. In addition to bacterial culture and serology, novel detection methods based on loop-mediated isothermal amplification (LAMP) are reported in the literature. However, the clinical utility of LAMP-based methods in comparison with the other methods is scarcely documented in the literature. AIM: To clarify the clinical utility of a LAMP-based method in the diagnosis of Yersinia pseudotuberculosis infection. METHODOLOGY: Inpatients admitted due to suspected Yersinia pseudotuberculosis infection during April 2008 through March 2015 were enrolled. Results of the LAMP-based method as well as culture and serology were collected and compared. RESULTS: Among 16 eligible cases, serology proved positive in 13 (81.3 %) cases, LAMP in eight (50 %) cases, and bacterial culture in four (25 %) cases. No significant difference among the three methods could be proved statistically. Although serology was the most sensitive method, it is known to miss cases such as young patients, whereas LAMP could complement all three cases missed by serology. Furthermore, LAMP can return the test result within a few hours from specimen receipt, whereas serology and bacterial culture requires days to weeks of time. CONCLUSION: Although second to serology in sensitivity, the LAMP-based method proved its utility in making rapid diagnosis, and serving a complementary role to serology.


Nucleic Acid Amplification Techniques/methods , Yersinia pseudotuberculosis Infections/diagnosis , Yersinia pseudotuberculosis/isolation & purification , Agglutination Tests , Child , Child, Preschool , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , Feces/microbiology , Female , Humans , Infant , Male , Nucleic Acid Amplification Techniques/standards , Time Factors , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/metabolism
12.
Infect Immun ; 86(3)2018 03.
Article En | MEDLINE | ID: mdl-29263104

Murine Ly6Chi inflammatory monocytes (IMs) require CCR2 to leave the bone marrow and enter mesenteric lymph nodes (MLNs) and other organs in response to Yersinia pseudotuberculosis infection. We are investigating how IMs, which can differentiate into CD11c+ dendritic cells (DCs), contribute to innate and adaptive immunity to Y. pseudotuberculosis Previously, we obtained evidence that IMs are important for a dominant CD8+ T cell response to the epitope YopE69-77 and host survival using intravenous infections with attenuated Y. pseudotuberculosis Here we challenged CCR2+/+ or CCR2-/- mice orally with wild-type Y. pseudotuberculosis to investigate how IMs contribute to immune responses during intestinal infection. Unexpectedly, CCR2-/- mice did not have reduced survival but retained body weight better and their MLNs cleared Y. pseudotuberculosis faster and with reduced lymphadenopathy compared to controls. Enhanced bacterial clearance in CCR2-/- mice correlated with reduced numbers of IMs in spleens and increased numbers of neutrophils in livers. In situ imaging of MLNs and spleens from CCR2-GFP mice showed that green fluorescent protein-positive (GFP+) IMs accumulated at the periphery of neutrophil-rich Yersinia-containing pyogranulomas. GFP+ IMs colocalized with CD11c+ cells and YopE69-77-specific CD8+ T cells in MLNs, suggesting that IM-derived DCs prime adaptive responses in Yersinia pyogranulomas. Consistently, CCR2-/- mice had reduced numbers of splenic DCs, YopE69-77-specific CD8+ T cells, CD4+ T cells, and B cells in organs and lower levels of serum antibodies to Y. pseudotuberculosis antigens. Our data suggest that IMs differentiate into DCs in MLN pyogranulomas and direct adaptive responses in T cells at the expense of innate immunity during oral Y. pseudotuberculosis infection.


Adaptive Immunity , Immunity, Innate , Monocytes/immunology , Mouth/microbiology , Receptors, CCR2/immunology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/immunology , Animals , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Female , Humans , Mice , Mice, Inbred C57BL , Receptors, CCR2/genetics , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/physiology , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/microbiology
13.
Immunity ; 47(6): 1154-1168.e6, 2017 12 19.
Article En | MEDLINE | ID: mdl-29221731

White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory.


Adipose Tissue, White/transplantation , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Toxoplasmosis/immunology , Yersinia pseudotuberculosis Infections/immunology , Adipose Tissue, White/immunology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/parasitology , Gene Expression , Genes, Reporter , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Lipid Metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Survival Analysis , Tissue Transplantation , Toxoplasma/immunology , Toxoplasmosis/genetics , Toxoplasmosis/mortality , Toxoplasmosis/parasitology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis Infections/mortality
14.
J Exp Med ; 214(11): 3171-3182, 2017 Nov 06.
Article En | MEDLINE | ID: mdl-28855241

Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed "effector-triggered immunity." The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase-induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.


Apoptosis/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/immunology , Animals , Apoptosis/genetics , Cytokines/immunology , Cytokines/metabolism , Disease Resistance/genetics , Disease Resistance/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Models, Immunological , NF-kappa B/immunology , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Survival Analysis , Yersinia pseudotuberculosis/physiology , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/microbiology
15.
Cell Rep ; 19(1): 114-124, 2017 04 04.
Article En | MEDLINE | ID: mdl-28380351

Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm) cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8+ T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103-CD69+ Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN)-ß and interleukin-12 (IL-12), which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT) cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103-CD69+ Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-ß and IL-12 during infection, and deletion of CCR2+ IL-12-producing cells reduced the size of the CD103- Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity.


CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Immunologic Memory/immunology , Inflammation/immunology , Intestines/immunology , Yersinia pseudotuberculosis Infections/immunology , Adjuvants, Immunologic/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/metabolism , Antiviral Agents/metabolism , Integrin alpha Chains/genetics , Integrin alpha Chains/metabolism , Interferons/metabolism , Interleukin-12/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Receptors, CCR2/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
16.
Cell Mol Life Sci ; 74(15): 2839-2850, 2017 08.
Article En | MEDLINE | ID: mdl-28378044

Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4+ T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4+ T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3+ regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4+ T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4+ T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3+ Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4+ T cell subsets by altering their TCR downstream signaling.


Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/microbiology , Th17 Cells/microbiology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Cell Differentiation , Female , Forkhead Transcription Factors/immunology , Host-Pathogen Interactions , Intestines/immunology , Intestines/microbiology , Mice, Inbred BALB C , Signal Transduction , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Yersinia pseudotuberculosis/physiology
17.
J Infect Dis ; 216(6): 752-760, 2017 09 15.
Article En | MEDLINE | ID: mdl-28329174

Background: To successfully limit pathogen dissemination, an immunological link between the entry tissue of the pathogen and the underlying secondary lymphoid organs (SLOs) needs to be established to prime adaptive immune responses. Here, the prerequisite of CCR7 to mount host immune responses within SLOs during gastrointestinal Yersinia pseudotuberculosis infection to limit pathogen spread was investigated. Methods: Survival, bacterial dissemination, and intestinal and systemic pathology of wild-type and CCR7-/- mice were assessed and correlated to the presence of immune cell subsets and cytokine responses throughout the course of infection. Results: The CCR7-/- mice show a significantly higher morbidity and are more prone to pathogen dissemination and intestinal and systemic inflammation during the oral route of infection. Significant impact of CCR7 deficiency over the course of infection on several immunological parameters were observed (ie, elevated neutrophil-dominated innate immune response in Peyer's patches, limited dendritic cell migration to mesenteric lymph nodes [mLNs] causing reduced T cell-mediated adaptive immune responses (in particular Th17-like responses) in mLNs). Conclusions: Our work indicates that CCR7 is required to mount a robust immune response against enteropathogenic Y. pseudotuberculosis by promoting Th17-like responses in mLNs.


Genetic Predisposition to Disease , Receptors, CCR7/immunology , Th17 Cells/immunology , Yersinia pseudotuberculosis Infections/immunology , Animals , Cell Movement , Dendritic Cells/immunology , Host-Pathogen Interactions/genetics , Intestines/immunology , Intestines/microbiology , Lymph Nodes/immunology , Lymph Nodes/microbiology , Mice , Myeloid Cells/immunology , Peyer's Patches/immunology , Peyer's Patches/microbiology , Receptors, CCR7/genetics , Yersinia pseudotuberculosis , Yersinia pseudotuberculosis Infections/genetics
18.
PLoS One ; 12(2): e0172314, 2017.
Article En | MEDLINE | ID: mdl-28207901

Prior studies indicated that CD8+ T cells responding to a surrogate single antigen expressed by Y. pseudotuberculosis, ovalbumin, were insufficient to protect against yersiniosis. Herein we tested the hypothesis that CD8+ T cells reactive to the natural Yersinia antigen YopE would be more effective at providing mucosal protection. We first confirmed that immunization with the attenuated ksgA- strain of Y. pseudotuberculosis generated YopE-specific CD8+ T cells. These T cells were protective against challenge with virulent Listeria monocytogenes expressing secreted YopE. Mice immunized with an attenuated L. monocytogenes YopE+ strain generated large numbers of functional YopE-specific CD8+ T cells, and initially controlled a systemic challenge with virulent Y. pseudotuberculosis, yet eventually succumbed to yersiniosis. Mice vaccinated with a YopE peptide and cholera toxin vaccine generated robust T cell responses, providing protection to 60% of the mice challenged mucosally but failed to show complete protection against systemic infection with virulent Y. pseudotuberculosis. These studies demonstrate that vaccination with recombinant YopE vaccines can generate YopE-specific CD8+ T cells, that can provide significant mucosal protection but these cells are insufficient to provide sterilizing immunity against systemic Y. pseudotuberculosis infection. Our studies have implications for Yersinia vaccine development studies.


Bacterial Outer Membrane Proteins/immunology , CD8-Positive T-Lymphocytes/immunology , Mucous Membrane/immunology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/prevention & control , Yersinia pseudotuberculosis/immunology , Administration, Intranasal , Animals , Bacterial Vaccines/administration & dosage , Female , Immunization , Mice , Mice, Inbred C57BL , Mucous Membrane/microbiology
19.
Proc Natl Acad Sci U S A ; 114(5): E791-E800, 2017 01 31.
Article En | MEDLINE | ID: mdl-28096329

Pathogenic bacteria need to rapidly adjust their virulence and fitness program to prevent eradication by the host. So far, underlying adaptation processes that drive pathogenesis have mostly been studied in vitro, neglecting the true complexity of host-induced stimuli acting on the invading pathogen. In this study, we developed an unbiased experimental approach that allows simultaneous monitoring of genome-wide infection-linked transcriptional alterations of the host and colonizing extracellular pathogens. Using this tool for Yersinia pseudotuberculosis-infected lymphatic tissues, we revealed numerous alterations of host transcripts associated with inflammatory and acute-phase responses, coagulative activities, and transition metal ion sequestration, highlighting that the immune response is dominated by infiltrating neutrophils and elicits a mixed TH17/TH1 response. In consequence, the pathogen's response is mainly directed to prevent phagocytic attacks. Yersinia up-regulates the gene and expression dose of the antiphagocytic type III secretion system (T3SS) and induces functions counteracting neutrophil-induced ion deprivation, radical stress, and nutritional restraints. Several conserved bacterial riboregulators were identified that impacted this response. The strongest influence on virulence was found for the loss of the carbon storage regulator (Csr) system, which is shown to be essential for the up-regulation of the T3SS on host cell contact. In summary, our established approach provides a powerful tool for the discovery of infection-specific stimuli, induced host and pathogen responses, and underlying regulatory processes.


Host-Pathogen Interactions/genetics , Transcriptome , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis/genetics , Animals , Female , Mice, Inbred BALB C , Peyer's Patches/metabolism , Peyer's Patches/microbiology , RNA, Messenger/genetics , Sequence Analysis, RNA , Virulence Factors/genetics , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/physiology , Yersinia pseudotuberculosis Infections/immunology
20.
Infect Immun ; 85(2)2017 02.
Article En | MEDLINE | ID: mdl-27872237

Signaling through Toll-like receptors (TLRs), the main receptors in innate immunity, is essential for the defense of mucosal surfaces. It was previously shown that systemic TLR5 stimulation by bacterial flagellin induces an immediate, transient interleukin-22 (IL-22)-dependent antimicrobial response to bacterial or viral infections of the mucosa. This process was dependent on the activation of type 3 innate lymphoid cells (ILCs). The objective of the present study was to analyze the effects of flagellin treatment in a murine model of oral infection with Yersinia pseudotuberculosis (an invasive, Gram-negative, enteropathogenic bacterium that targets the small intestine). We found that systemic administration of flagellin significantly increased the survival rate after intestinal infection (but not systemic infection) by Y. pseudotuberculosis This protection was associated with a low bacterial count in the gut and the spleen. In contrast, no protection was afforded by administration of the TLR4 agonist lipopolysaccharide, suggesting the presence of a flagellin-specific effect. Lastly, we found that TLR5- and MyD88-mediated signaling was required for the protective effects of flagellin, whereas neither lymphoid cells nor IL-22 was involved.


Flagellin/immunology , Interleukins/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/metabolism , Yersinia pseudotuberculosis/immunology , Animals , Disease Models, Animal , Female , Flagellin/administration & dosage , Interleukins/genetics , Intestinal Mucosa/microbiology , Lipopolysaccharides/immunology , Mice , Mice, Knockout , Recombinant Fusion Proteins , Signal Transduction , Toll-Like Receptors/metabolism , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis Infections/mortality , Interleukin-22
...