Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(30): 7652-7658, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39037351

RESUMEN

Oligomerization is one of the important mechanisms for G protein-coupled receptors (GPCRs) to modulate their activity in signal transduction. However, details of how and why the oligomerization of GPCRs regulates their functions under physiological conditions remain largely unknown. Here, using single-molecule photobleaching technology, we show that chemokine ligand 5 (CCL5) and chemokine ligand 8 (CCL8) are similar to the previously reported chemokine ligand 11 (CCL11) and chemokine ligand 24 (CCL24), which can regulate the oligomerization of chemokine receptor 3 (CCR3). Our results further demonstrate that downstream proteins, ß-arrestin 2 and Gi protein complex, on the CCR3 signal transduction pathway, can inversely regulate the oligomeric states of CCR3 induced by its binding ligands. This unexpected discovery suggests complex relationships between the oligomeric behaviors of CCR3 and the components of ligands-CCR3-downstream proteins, reflecting the potentially functional impact of the oligomerization on the multiple activation pathways of GPCR, such as biased activation.


Asunto(s)
Multimerización de Proteína , Receptores CCR3 , Transducción de Señal , Receptores CCR3/metabolismo , Receptores CCR3/química , Humanos , Ligandos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Arrestina beta 2/metabolismo , Arrestina beta 2/química
2.
J Biol Chem ; 298(5): 101837, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307348

RESUMEN

Arrestins and their yeast homologs, arrestin-related trafficking adaptors (ARTs), share a stretch of 29 amino acids called the ART motif. However, the functionality of that motif is unknown. We now report that deleting this motif prevents agonist-induced ubiquitination of ß-arrestin2 (ß-arr2) and blocks its association with activated G protein-coupled receptors (GPCRs). Within the ART motif, we have identified a conserved phenylalanine residue, Phe116, that is critical for the formation of ß-arr2-GPCR complexes. ß-arr2 Phe116Ala mutant has negligible effect on blunting ß2-adrenergic receptor-induced cAMP generation unlike ß-arr2, which promotes rapid desensitization. Furthermore, available structures for inactive and inositol hexakisphosphate 6-activated forms of bovine ß-arr2 revealed that Phe116 is ensconced in a hydrophobic pocket, whereas the adjacent Phe117 and Phe118 residues are not. Mutagenesis of Phe117 and Phe118, but not Phe116, preserves GPCR interaction of ß-arr2. Surprisingly, Phe116 is dispensable for the association of ß-arr2 with its non-GPCR partners. ß-arr2 Phe116Ala mutant presents a significantly reduced protein half-life compared with ß-arr2 and undergoes constitutive Lys-48-linked polyubiquitination, which tags proteins for proteasomal degradation. We also found that Phe116 is critical for agonist-dependent ß-arr2 ubiquitination with Lys-63-polyubiquitin linkages that are known mediators of protein scaffolding and signal transduction. Finally, we have shown that ß-arr2 Phe116Ala interaction with activated ß2-adrenergic receptor can be rescued with an in-frame fusion of ubiquitin. Taken together, we conclude that Phe116 preserves structural stability of ß-arr2, regulates the formation of ß-arr2-GPCR complexes that inhibit G protein signaling, and promotes subsequent ubiquitin-dependent ß-arr2 localization and trafficking.


Asunto(s)
Fenilalanina , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2 , Animales , Bovinos , Ubiquitina/metabolismo , Arrestina beta 2/química , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
3.
J Mol Biol ; 434(7): 167465, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35077767

RESUMEN

Arrestin binding to active phosphorylated G protein-coupled receptors terminates G protein coupling and initiates another wave of signaling. Among the effectors that bind directly to receptor-associated arrestins are extracellular signal-regulated kinases 1/2 (ERK1/2), which promote cellular proliferation and survival. Arrestins may also engage ERK1/2 in isolation in a pre- or post-signaling complex that is likely in equilibrium with the full signal initiation complex. Molecular details of these binary complexes remain unknown. Here, we investigate the molecular mechanisms whereby arrestin-2 and arrestin-3 (a.k.a. ß-arrestin1 and ß-arrestin2, respectively) engage ERK1/2 in pairwise interactions. We find that purified arrestin-3 binds ERK2 more avidly than arrestin-2. A combination of biophysical techniques and peptide array analysis demonstrates that the molecular basis in this difference of binding strength is that the two non-visual arrestins bind ERK2 via different parts of the molecule. We propose a structural model of the ERK2-arrestin-3 complex in solution using size-exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). This binary complex exhibits conformational heterogeneity. We speculate that this drives the equilibrium either toward the full signaling complex with receptor-bound arrestin at the membrane or toward full dissociation in the cytoplasm. As ERK1/2 regulates cell migration, proliferation, and survival, understanding complexes that relate to its activation could be exploited to control cell fate.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos , beta-Arrestina 1 , Arrestina beta 2 , Proteína Quinasa 1 Activada por Mitógenos/química , Unión Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X , beta-Arrestina 1/química , Arrestina beta 2/química
4.
Mol Pharmacol ; 100(2): 170-180, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031190

RESUMEN

Opioids play an important role in pain relief, but repeated exposure results in tolerance and dependence. To make opioids more effective and useful, research in the field has focused on reducing the tolerance and dependence for chronic pain relief. Here, we showed the effect of A20-binding inhibitor of nuclear factor-κB (ABIN-1) in modulating morphine function. We used hot-plate tests and conditioned place preference (CPP) tests to show that overexpression of ABIN-1 in the mouse brain attenuated morphine dependence. These effects of ABIN-1 are most likely mediated through the formation of ABIN-1-ß-arrestin2 complexes, which accelerate ß-arrestin2 degradation by ubiquitination. With the degradation of ß-arrestin2, ABIN-1 overexpression also decreased µ opioid receptor (MOR) phosphorylation and internalization after opioid treatment, affecting the ß-arrestin2-dependent signaling pathway to regulate morphine tolerance. Importantly, the effect of ABIN-1 on morphine tolerance was abolished in ß-arrestin2-knockout mice. Taken together, these results suggest that the interaction between ABIN-1 and ß-arrestin2 inhibits MOR internalization to attenuate morphine tolerance, revealing a novel mechanism for MOR regulation. Hence, ABIN-1 may be a therapeutic target to regulate MOR internalization, thus providing a foundation for a novel treatment strategy for alleviating morphine tolerance and dependence. SIGNIFICANCE STATEMENT: A20-binding inhibitor of nuclear factor-κB (ABIN-1) overexpression in the mouse brain attenuated morphine tolerance and dependence. The likely mechanism for this finding is that ABIN-1-ß-arrestin2 complex formation facilitated ß-arrestin2 degradation by ubiquitination. ABIN-1 targeted ß-arrestin2 to regulate morphine tolerance. Therefore, the enhancement of ABIN-1 is an important strategy to prevent morphine tolerance and dependence.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/metabolismo , Trastornos Relacionados con Opioides/genética , Receptores Opioides mu/metabolismo , Arrestina beta 2/metabolismo , Animales , Animales Modificados Genéticamente , Células CHO , Células , Cricetulus , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Masculino , Ratones , Trastornos Relacionados con Opioides/metabolismo , Fosforilación , Proteolisis , Ubiquitinación , Arrestina beta 2/química , Arrestina beta 2/genética
5.
Proc Natl Acad Sci U S A ; 117(28): 16346-16355, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601232

RESUMEN

Agonists to the µ-opioid G protein-coupled receptor (µOR) can alleviate pain through activation of G protein signaling, but they can also induce ß-arrestin activation, leading to such side effects as respiratory depression. Biased ligands to µOR that induce G protein signaling without inducing ß-arrestin signaling can alleviate pain while reducing side effects. However, the mechanism for stimulating ß-arrestin signaling is not known, making it difficult to design optimum biased ligands. We use extensive molecular dynamics simulations to determine three-dimensional (3D) structures of activated ß-arrestin2 stabilized by phosphorylated µOR bound to the morphine and D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) nonbiased agonists and to the TRV130 biased agonist. For nonbiased agonists, we find that the ß-arrestin2 couples to the phosphorylated µOR by forming strong polar interactions with intracellular loop 2 (ICL2) and either the ICL3 or cytoplasmic region of transmembrane (TM6). Strikingly, Gi protein makes identical strong bonds with these same ICLs. Thus, the Gi protein and ß-arrestin2 compete for the same binding site even though their recruitment leads to much different outcomes. On the other hand, we find that TRV130 has a greater tendency to bind the extracellular portion of TM2 and TM3, which repositions TM6 in the cytoplasmic region of µOR, hindering ß-arrestin2 from making polar anchors to the ICL3 or to the cytosolic end of TM6. This dramatically reduces the affinity between µOR and ß-arrestin2.


Asunto(s)
Receptores Opioides mu/metabolismo , Arrestina beta 2/metabolismo , Analgésicos Opioides/metabolismo , Animales , Sitios de Unión , Membrana Celular/metabolismo , Citoplasma/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Ratones , Simulación de Dinámica Molecular , Morfina/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Transducción de Señal , Compuestos de Espiro/metabolismo , Tiofenos/metabolismo , Arrestina beta 2/química
6.
Structure ; 28(9): 1014-1023.e4, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32579945

RESUMEN

ß-Arrestins (ßarrs) critically regulate G-protein-coupled receptor (GPCR) signaling and trafficking. ßarrs have two isoforms, ßarr1 and ßarr2. Receptor phosphorylation is a key determinant for the binding of ßarrs, and understanding the intricate details of receptor-ßarr interaction is the next frontier in GPCR structural biology. The high-resolution structure of active ßarr1 in complex with a phosphopeptide derived from GPCR has been revealed, but that of ßarr2 remains elusive. Here, we present a 2.3-Å crystal structure of ßarr2 in complex with a phosphopeptide (C7pp) derived from the carboxyl terminus of CXCR7. The structural analysis of C7pp-bound ßarr2 reveals key differences from the previously determined active conformation of ßarr1. One of the key differences is that C7pp-bound ßarr2 shows a relatively small inter-domain rotation. Antibody-fragment-based conformational sensor and hydrogen/deuterium exchange experiments further corroborated the structural features of ßarr2 and suggested that ßarr2 adopts a range of inter-domain rotations.


Asunto(s)
Receptores CXCR/metabolismo , Arrestina beta 2/química , Calorimetría , Cristalografía por Rayos X , Células HEK293 , Humanos , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Dominios Proteicos , Transporte de Proteínas/efectos de los fármacos , Receptores CXCR/química , Arrestina beta 2/agonistas , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
7.
Structure ; 28(3): 314-323.e3, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31948726

RESUMEN

Arrestins desensitize and/or internalize G-protein-coupled receptors by interacting with phosphorylated receptors. A few studies have reported that arrestins themselves can be phosphorylated, and the phosphorylation status modulates their cellular functions. However, the effects of phosphorylation on arrestin structure have not been studied. Here, we investigated the conformational changes in ß-arrestin-1 and -2 upon incorporation of phospho-mimetic mutations into the known phosphorylation sites (i.e., S412D for ß-arrestin-1 and S14D, T276D, S14D/T276D, S361D, T383D, and S361D/T383D for ß-arrestin-2) by using hydrogen/deuterium-exchange mass spectrometry (HDX-MS). HDX-MS analysis suggested that ß-arrestin-2 S14D/T276D shows an HDX profile similar to the pre-active states, resulting in increased interaction with receptors. Phospho-mimetic mutation at corresponding residues of ß-arrestin-1 (i.e., S13D/T275D) induced similar conformational and functional consequences, and the detailed structural changes related to ß-arrestin-1 S13D/T275D were investigated further by X-ray crystallography.


Asunto(s)
Mutación , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Arrestina beta 2/química , Arrestina beta 2/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica , Ratas , beta-Arrestina 1/genética , Arrestina beta 2/genética
8.
ACS Sens ; 5(1): 57-64, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31849219

RESUMEN

ß-Arrestins are critical regulators of G protein-coupled receptors (GPCRs) that desensitize G protein signaling, promote receptor internalization, and initiate signaling on their own. Recent structural findings indicate that ß-arrestins adopt different conformations upon interaction with agonist-activated GPCRs. Here, we established a ß-arrestin-2 conformational bioluminescence resonance energy transfer (BRET) sensor composed of the bright Nanoluc BRET donor and the red-shifted CyOFP1 BRET acceptor. The sensor monitors early intramolecular conformational changes of ß-arrestin-2 in complex with a wide panel of different class A and class B GPCRs upon agonist activation and with orphan GPCRs known to spontaneously recruit ß-arrestin-2. The introduction of the R170E mutant in the ß-arrestin-2 sensor allowed the detection of a partially active ß-arrestin-2 conformation, which is not dependent on receptor phosphorylation, while the deletion of the ß-arrestin-2 finger-loop region detected the "tail-conformation" corresponding to the interaction of ß-arrestin with the carboxyl-terminal domain of GPCRs. The new sensors combine the advantages of the BRET technique in terms of sensitivity, robustness, and suitability for real-time measurements with a high responsiveness toward early conformational changes to help to elucidate the different conformational states of ß-arrestins associated with GPCR activation in living cells.


Asunto(s)
Técnicas Biosensibles/métodos , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/química , Humanos
9.
Cell Res ; 29(12): 971-983, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31776446

RESUMEN

Arrestins comprise a family of signal regulators of G-protein-coupled receptors (GPCRs), which include arrestins 1 to 4. While arrestins 1 and 4 are visual arrestins dedicated to rhodopsin, arrestins 2 and 3 (Arr2 and Arr3) are ß-arrestins known to regulate many nonvisual GPCRs. The dynamic and promiscuous coupling of Arr2 to nonvisual GPCRs has posed technical challenges to tackle the basis of arrestin binding to GPCRs. Here we report the structure of Arr2 in complex with neurotensin receptor 1 (NTSR1), which reveals an overall assembly that is strikingly different from the visual arrestin-rhodopsin complex by a 90° rotation of Arr2 relative to the receptor. In this new configuration, intracellular loop 3 (ICL3) and transmembrane helix 6 (TM6) of the receptor are oriented toward the N-terminal domain of the arrestin, making it possible for GPCRs that lack the C-terminal tail to couple Arr2 through their ICL3. Molecular dynamics simulation and crosslinking data further support the assembly of the Arr2‒NTSR1 complex. Sequence analysis and homology modeling suggest that the Arr2‒NTSR1 complex structure may provide an alternative template for modeling arrestin-GPCR interactions.


Asunto(s)
Receptores de Neurotensina , Arrestina beta 2 , Humanos , Simulación del Acoplamiento Molecular/métodos , Unión Proteica , Conformación Proteica , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Arrestina beta 2/química , Arrestina beta 2/metabolismo
10.
Cell Signal ; 63: 109361, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344440

RESUMEN

ß-Arrestins are multifunctional adaptor proteins best know for their vital role in regulating G protein coupled receptor (GPCR) trafficking and signaling. ß-arrestin2 recruitment and receptor internalization of corticotropin-releasing factor receptor 1 (CRFR1), a GPCR whose antagonists have been shown to demonstrate both anxiolytic- and antidepressant-like effects, have previously been shown to be modulated by PDZ proteins. Thus, a structural characterization of the interaction between ß-arrestins and PDZ proteins can delineate potential mechanism of PDZ-dependent regulation of GPCR trafficking. Here, we find that the PDZ proteins PSD-95, MAGI1, and PDZK1 interact with ß-arrestin2 in a PDZ domain-dependent manner. Further investigation of such interaction using mutational analyses revealed that mutating the alanine residue at 175 residue of ß-arrestin2 to phenylalanine impairs interaction with PSD-95. Additionally, A175F mutant of ß-arrestin2 shows decreased CRF-stimulated recruitment to CRFR1 and reduced receptor internalization. Thus, our findings show that the interaction between ß-arrestins and PDZ proteins is key for CRFR1 trafficking and may be targeted to mitigate impaired CRFR1 signaling in mental and psychiatric disorders.


Asunto(s)
Dominios PDZ , Receptores de Hormona Liberadora de Corticotropina , Arrestina beta 2 , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Homólogo 4 de la Proteína Discs Large/química , Homólogo 4 de la Proteína Discs Large/metabolismo , Guanilato-Quinasas/química , Guanilato-Quinasas/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Transporte de Proteínas , Receptores de Hormona Liberadora de Corticotropina/química , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Arrestina beta 2/química , Arrestina beta 2/metabolismo
11.
Nat Commun ; 10(1): 1261, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890705

RESUMEN

Cellular functions of arrestins are determined in part by the pattern of phosphorylation on the G protein-coupled receptors (GPCRs) to which arrestins bind. Despite high-resolution structural data of arrestins bound to phosphorylated receptor C-termini, the functional role of each phosphorylation site remains obscure. Here, we employ a library of synthetic phosphopeptide analogues of the GPCR rhodopsin C-terminus and determine the ability of these peptides to bind and activate arrestins using a variety of biochemical and biophysical methods. We further characterize how these peptides modulate the conformation of arrestin-1 by nuclear magnetic resonance (NMR). Our results indicate different functional classes of phosphorylation sites: 'key sites' required for arrestin binding and activation, an 'inhibitory site' that abrogates arrestin binding, and 'modulator sites' that influence the global conformation of arrestin. These functional motifs allow a better understanding of how different GPCR phosphorylation patterns might control how arrestin functions in the cell.


Asunto(s)
Arrestina/metabolismo , Fosforilación/fisiología , Rodopsina/metabolismo , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Arrestina/química , Arrestina/genética , Arrestina/aislamiento & purificación , Bioensayo , Bovinos , Membrana Celular/metabolismo , Mutación , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Rodopsina/química , Segmento Externo de la Célula en Bastón/metabolismo , beta-Arrestina 1/química , beta-Arrestina 1/aislamiento & purificación , Arrestina beta 2/química , Arrestina beta 2/aislamiento & purificación
12.
Anal Biochem ; 540-541: 64-75, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054528

RESUMEN

The emergence of microscale thermophoresis (MST) as a technique for determining the dissociation constants for bimolecular interactions has enabled these quantities to be measured in systems that were previously difficult or impracticable. However, most models for analyses of these data featured the assumption of a simple 1:1 binding interaction. The only model widely used for multiple binding sites was the Hill equation. Here, we describe two new MST analytic models that assume a 1:2 binding scheme: the first features two microscopic binding constants (KD(1) and KD(2)), while the other assumes symmetry in the bivalent molecule, culminating in a model with a single macroscopic dissociation constant (KD,M) and a single factor (α) that accounts for apparent cooperativity in the binding. We also discuss the general applicability of the Hill equation for MST data. The performances of the algorithms on both real and simulated data are assessed, and implementation of the algorithms in the MST analysis program PALMIST is discussed.


Asunto(s)
Algoritmos , Modelos Moleculares , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Sitios de Unión , Bovinos , Cinética , Método de Montecarlo , Mutagénesis Sitio-Dirigida , Ácido Fítico/química , Ácido Fítico/metabolismo , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Arrestina beta 2/química , Arrestina beta 2/metabolismo
13.
J Biol Chem ; 292(33): 13867-13878, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28652403

RESUMEN

Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate ß-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls ß-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for ß-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of ß-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes ß-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for ß-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation.


Asunto(s)
Endocitosis , Proteínas Proto-Oncogénicas c-akt/agonistas , Receptores Purinérgicos P2Y12/metabolismo , Receptores de Trombina/agonistas , Transducción de Señal , Arrestina beta 2/metabolismo , Sustitución de Aminoácidos , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Endosomas/metabolismo , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Multimerización de Proteína , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor PAR-1/agonistas , Receptor PAR-1/química , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/genética , Receptores de Trombina/química , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Arrestina beta 2/química
14.
J Biol Chem ; 292(2): 575-584, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27895119

RESUMEN

Biased agonism at G protein-coupled receptors constitutes a promising area of research for the identification of new therapeutic molecules. In this study we identified two novel biased ligands for the chemokine receptors CCR2 and CCR5 and characterized their functional properties. We showed that J113863 and its enantiomer UCB35625, initially identified as high affinity antagonists for CCR1 and CCR3, also bind with low affinity to the closely related receptors CCR2 and CCR5. Binding of J113863 and UCB35625 to CCR2 or CCR5 resulted in the full or partial activation of the three Gi proteins and the two Go isoforms. Unlike chemokines, the compounds did not activate G12 Binding of J113863 to CCR2 or CCR5 also induced the recruitment of ß-arrestin 2, whereas UCB35625 did not. UCB35625 induced the chemotaxis of L1.2 cells expressing CCR2 or CCR5. In contrast, J113863 induced the migration of L1.2-CCR2 cells but antagonized the chemokine-induced migration of L1.2-CCR5 cells. We also showed that replacing the phenylalanine 3.33 in CCR5 TM3 by the corresponding histidine of CCR2 converts J113863 from an antagonist for cell migration and a partial agonist in other assays to a full agonist in all assays. Further analyses indicated that F3.33H substitution strongly increased the activation of G proteins and ß-arrestin 2 by J113863. These results highlight the biased nature of the J113863 and UCB35625 that act either as antagonist, partial agonist, or full agonist according to the receptor, the enantiomer, and the signaling pathway investigated.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Transducción de Señal/efectos de los fármacos , Xantenos/farmacología , Sustitución de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Mutación Missense , Unión Proteica/efectos de los fármacos , Receptores CCR2/agonistas , Receptores CCR2/química , Receptores CCR2/genética , Receptores CCR5/agonistas , Receptores CCR5/química , Receptores CCR5/genética , Xantenos/química , Arrestina beta 2/química , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
15.
Sci Rep ; 6: 21025, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26868142

RESUMEN

Three-kinase mitogen-activated protein kinase (MAPK) signaling cascades are present in virtually all eukaryotic cells. MAPK cascades are organized by scaffold proteins, which assemble cognate kinases into productive signaling complexes. Arrestin-3 facilitates JNK activation in cells, and a short 25-residue arrestin-3 peptide was identified as the critical JNK3-binding element. Here we demonstrate that this peptide also binds MKK4, MKK7, and ASK1, which are upstream JNK3-activating kinases. This peptide is sufficient to enhance JNK3 activity in cells. A homologous arrestin-2 peptide, which differs only in four positions, binds MKK4, but not MKK7 or JNK3, and is ineffective in cells at enhancing activation of JNK3. The arrestin-3 peptide is the smallest MAPK scaffold known. This peptide or its mimics can regulate MAPKs, affecting cellular decisions to live or die.


Asunto(s)
Activadores de Enzimas , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Péptidos , beta-Arrestina 1/química , Arrestina beta 2/química , Animales , Células COS , Chlorocebus aethiops , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/síntesis química , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Humanos , Proteína Quinasa 10 Activada por Mitógenos/genética , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA