Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Intervalo de año de publicación
1.
Dev Biol ; 477: 37-48, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991533

RESUMEN

Ras is the most commonly mutated oncogene in humans and uses three oncogenic effectors: Raf, PI3K, and RalGEF activation of Ral. Understanding the importance of RalGEF>Ral signaling in cancer is hampered by the paucity of knowledge about their function in animal development, particularly in cell movements. We found that mutations that disrupt function of RalGEF or Ral enhance migration phenotypes of mutants for genes with established roles in cell migration. We used as a model the migration of the canal associated neurons (CANs), and validated our results in HSN cell migration, neurite guidance, and general animal locomotion. These functions of RalGEF and Ral are specific to their control of Ral signaling output rather than other published functions of these proteins. In this capacity Ral functions cell autonomously as a permissive developmental signal. In contrast, we observed Ras, the canonical activator of RalGEF>Ral signaling in cancer, to function as an instructive signal. Furthermore, we unexpectedly identified a function for the close Ras relative, Rap1, consistent with activation of RalGEF>Ral. These studies define functions of RalGEF>Ral, Rap1 and Ras signaling in morphogenetic processes that fashion the nervous system. We have also defined a model for studying how small GTPases partner with downstream effectors. Taken together, this analysis defines novel molecules and relationships in signaling networks that control cell movements during development of the nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Sistema Nervioso/fisiopatología , Transducción de Señal , Proteínas de Unión al GTP ral/fisiología , Proteínas ras/fisiología , Animales , Sistemas CRISPR-Cas , Caenorhabditis elegans/embriología , Inducción Embrionaria , Genes ras , Sistema Nervioso/embriología , Neuronas/fisiología , Proteínas ras/genética
2.
Sci Rep ; 9(1): 8910, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222145

RESUMEN

The monomeric GTPase RalB controls crucial physiological processes, including autophagy and invasion, but it still remains unclear how this multi-functionality is achieved. Previously, we reported that the RalGEF (Guanine nucleotide Exchange Factor) RGL2 binds and activates RalB to promote invasion. Here we show that RGL2, a major activator of RalB, is also required for autophagy. Using a novel automated image analysis method, Endomapper, we quantified the endogenous localization of the RGL2 activator and its substrate RalB at different endomembrane compartments, in an isogenic normal and Ras-transformed cell model. In both normal and Ras-transformed cells, we observed that RGL2 and RalB substantially localize at early and recycling endosomes, and to lesser extent at autophagosomes, but not at trans-Golgi. Interestingly the use of a FRET-based RalB biosensor indicated that RalB signaling is active at these endomembrane compartments at basal level in rich medium. Furthermore, induction of autophagy by nutrient starvation led to a considerable reduction of early and recycling endosomes, in contrast to the expected increase of autophagosomes, in both normal and Ras-transformed cells. However, autophagy mildly affected relative abundances of both RGL2 and RalB at early and recycling endosomes, and at autophagosomes. Interestingly, RalB activity increased at autophagosomes upon starvation in normal cells. These results suggest that the contribution of endosome membranes (carrying RGL2 and RalB molecules) increases total pool of RGL2-RalB at autophagosome forming compartments and might contribute to amplify RalB signaling to support autophagy.


Asunto(s)
Autofagia/fisiología , Transducción de Señal , Proteínas de Unión al GTP ral/metabolismo , Compartimento Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP ral/fisiología
3.
Gastroenterology ; 151(2): 324-337.e12, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27178121

RESUMEN

BACKGROUND & AIMS: High-throughput sequencing technologies have identified thousands of infrequently mutated genes in hepatocellular carcinomas (HCCs). However, high intratumor and intertumor heterogeneity, combined with large numbers of passenger mutations, have made it difficult to identify driver mutations that contribute to the development of HCC. We combined transposon mutagenesis with a high-throughput screen of a small-hairpin RNA (shRNA) library to identify genes and pathways that contribute to HCC development. METHODS: Sleeping beauty transposons were mobilized in livers of transgenic mice predisposed to develop hepatocellular adenoma and HCC owing to expression of the hepatitis B virus surface antigen. This whole-genome mutagenesis technique was used to generate an unbiased catalogue of candidate cancer genes (CCGs). Pooled shRNA libraries targeting 250 selected CCGs then were introduced into immortalized mouse liver cells and the cells were monitored for their tumor-forming ability after injection into nude mice. RESULTS: Transposon-mediated mutagenesis identified 1917 high-confident CCGs and highlighted the importance of Ras signaling in the development of HCC. Subsequent pooled shRNA library screening of 250 selected CCGs validated 27 HCC tumor-suppressor genes. Individual shRNA knockdown of 4 of these genes (Acaa2, Hbs1l, Ralgapa2, and Ubr2) increased the proliferation of multiple human HCC cell lines in culture and accelerated the formation of xenograft tumors in nude mice. The ability of Ralgapa2 to promote HCC cell proliferation and tumor formation required its inhibition of Rala and Ralb. Dual inhibition of Ras signaling via Ral and Raf, using a combination of small-molecule inhibitor RBC8 and sorafenib, reduced the proliferation of HCC cells in culture and completely inhibited their growth as xenograft tumors in nude mice. CONCLUSIONS: In a 2-step forward genetic screen in mice, we identified members of the Ral guanosine triphosphatase-activating protein pathway and other proteins as suppressors of HCC cell proliferation and tumor growth. These proteins might serve as therapeutic targets for liver cancer.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas Activadoras de GTPasa/fisiología , Genes Supresores de Tumor , Neoplasias Hepáticas Experimentales/genética , Proteínas de Unión al GTP ral/fisiología , Animales , Proliferación Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Hígado/metabolismo , Ratones , Ratones Transgénicos , Transducción de Señal/genética
4.
Biochim Biophys Acta ; 1863(8): 2072-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27188791

RESUMEN

Filamin A (FLNA) is known to act as platform for the signaling and intracellular trafficking of various GPCRs including dopamine D2 and D3 receptors (D2R, D3R). To understand molecular mechanisms involved in the FLNA-mediated regulation of D2R and D3R, comparative studies were conducted on the signaling and intracellular trafficking of the D2R and D3R in FLNA-knockdown cells, with a specific focus on the roles of the proteins that interact with FLNA and the D2R and D3R. Lowering the level of cellular FLNA caused an elevation in RalA activity and resulted in selective interference with the normal intracellular trafficking and signaling of the D2R and D3R, through GRK2 and ß-arrestins, respectively. Knockdown of FLNA or coexpression of active RalA interfered with the recycling of the internalized D2R and resulted in the development of receptor tolerance. Active RalA was found to interact with GRK2 to sequester it from D2R. Knockdown of FLNA or coexpression of active RalA prevented D3R from coupling with G protein. The selective involvement of GRK2- and ß-arrestins in the RalA-mediated cellular processes of the D2R and D3R was achieved via their different modes of interactions with the receptor and their distinct functional roles in receptor regulation. Our results show that FLNA is a multi-functional protein that acts as a platform on which D2R and D3R can interact with various proteins, through which selective regulation of these receptors occurs in combination with GRK2 and ß-arrestins.


Asunto(s)
Filaminas/fisiología , Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , beta-Arrestina 1/fisiología , Arrestina beta 2/fisiología , Proteínas de Unión al GTP ral/fisiología , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/biosíntesis , Agonistas de Dopamina/farmacología , Genes Reporteros , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Transporte de Proteínas/fisiología , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D3/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Proteínas de Unión al GTP ral/antagonistas & inhibidores
5.
Biochim Biophys Acta ; 1849(12): 1375-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26477488

RESUMEN

The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes ras , Mucina 4/biosíntesis , Proteínas de Neoplasias/biosíntesis , Neoplasias Pancreáticas/genética , Transducción de Señal/genética , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Quinasas Janus/fisiología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Transgénicos , Mucina 4/genética , Mutación Missense , FN-kappa B/fisiología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Mutación Puntual , Regiones Promotoras Genéticas , Procesamiento Postranscripcional del ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción AP-1/fisiología , Transcripción Genética , Regulación hacia Arriba , Proteínas de Unión al GTP ral/fisiología
6.
J Cell Biol ; 211(1): 27-37, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26459596

RESUMEN

Exosomes are secreted vesicles arising from the fusion of multivesicular bodies (MVBs) with the plasma membrane. Despite their importance in various processes, the molecular mechanisms controlling their formation and release remain unclear. Using nematodes and mammary tumor cells, we show that Ral GTPases are involved in exosome biogenesis. In Caenorhabditis elegans, RAL-1 localizes at the surface of secretory MVBs. A quantitative electron microscopy analysis of RAL-1-deficient animals revealed that RAL-1 is involved in both MVB formation and their fusion with the plasma membrane. These functions do not involve the exocyst complex, a common Ral guanosine triphosphatase (GTPase) effector. Furthermore, we show that the target membrane SNARE protein SYX-5 colocalizes with a constitutively active form of RAL-1 at the plasma membrane, and MVBs accumulate under the plasma membrane when SYX-5 is absent. In mammals, RalA and RalB are both required for the secretion of exosome-like vesicles in cultured cells. Therefore, Ral GTPases represent new regulators of MVB formation and exosome release.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/enzimología , Exosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Unión al GTP ral/fisiología , Animales , Caenorhabditis elegans/citología , Membrana Celular/enzimología , Fusión de Membrana , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo
7.
Methods Cell Biol ; 130: 307-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26360042

RESUMEN

Endocytic recycling represents a major mechanism for continuous supply of molecules to the plasma membrane. Particularly, outbound trafficking of the recycling endosome (RE) or RE-derived vesicles can be upregulated by cellular signaling, through mobilization of specialized protein complexes acting as transport machineries. Therefore, biochemical and functional characterization of cell signaling molecules that operate multimeric protein complexes in membrane transport provides important insights to signaling-regulated trafficking events. In this chapter, we described biochemical approaches and reporter assays in differentiated adipocytes to determine the activity and function of the small GTPase RalA, which relays upstream insulin signaling to the exocyst complex that targets intracellular vesicles bearing the Glut4 transporter to the plasma membrane. The experimental design outlined in this chapter can be applied to other regulated transport events facilitated by the exocyst complex, as well as other GTPases that operate distinct transport complexes in specific physiological settings.


Asunto(s)
Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/fisiología , Proteínas de Unión al GTP ral/fisiología , Células 3T3-L1 , Animales , Ratones , Microscopía Fluorescente , Transporte de Proteínas
8.
Oncotarget ; 6(15): 13334-46, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-26033452

RESUMEN

Our understanding of oncogenic signaling pathways has strongly fostered current concepts for targeted therapies in metastatic colorectal cancer. The RALA pathway is novel candidate due to its independent role in controlling expression of genes downstream of RAS.We compared RALA GTPase activities in three colorectal cancer cell lines by GTPase pull-down assay and analyzed the transcriptional and phenotypic effects of transient RALA silencing. Knocking-down RALA expression strongly diminished the active GTP-bound form of the protein. Proliferation of KRAS mutated cell lines was significantly reduced, while BRAF mutated cells were mostly unaffected. By microarray analysis we identified common genes showing altered expression upon RALA silencing in all cell lines. None of these genes were affected when the RAF/MAPK or PI3K pathways were blocked.To investigate the potential clinical relevance of the RALA pathway and its associated transcriptome, we performed a meta-analysis interrogating progression-free survival of colorectal cancer patients of five independent data sets using Cox regression. In each dataset, the RALA-responsive signature correlated with worse outcome.In summary, we uncovered the impact of the RAL signal transduction on genetic program and growth control in KRAS- and BRAF-mutated colorectal cells and demonstrated prognostic potential of the pathway-responsive gene signature in cancer patients.


Asunto(s)
Neoplasias Colorrectales/genética , Mutación/fisiología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP ral/fisiología , Western Blotting , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico , Silenciador del Gen/fisiología , Humanos , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Mol Cell ; 53(2): 209-20, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24389102

RESUMEN

Diverse environmental cues converge on and are integrated by the mTOR signaling network to control cellular growth and homeostasis. The mammalian Tsc1-Tsc2 GTPase activating protein (GAP) heterodimer is a critical negative regulator of Rheb and mTOR activation. The RalGAPα-RalGAPß heterodimer shares sequence and structural similarity with Tsc1-Tsc2. Unexpectedly, we observed that C. elegans expresses orthologs for the Rheb and RalA/B GTPases and for RalGAPα/ß, but not Tsc1/2. This prompted our investigation to determine whether RalGAPs additionally modulate mTOR signaling. We determined that C. elegans RalGAP loss decreased lifespan, consistent with a Tsc-like function. Additionally, RalGAP suppression in mammalian cells caused RalB-selective activation and Sec5- and exocyst-dependent engagement of mTORC1 and suppression of autophagy. Unexpectedly, we also found that Tsc1-Tsc2 loss activated RalA/B independently of Rheb-mTOR signaling. Finally, RalGAP suppression caused mTORC1-dependent pancreatic tumor cell invasion. Our findings identify an unexpected crosstalk and integration of the Ral and mTOR signaling networks.


Asunto(s)
Autofagia/genética , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/citología , Senescencia Celular/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Invasividad Neoplásica/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al GTP ral/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
10.
Oncogene ; 32(11): 1408-15, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22580611

RESUMEN

Incidence of kidney cancer is on the rise, and a better understanding of molecular mechanisms involved in the cancer invasion and metastasis is required for the development of curative therapeutics. In this study, we report that the proinflammatory cytokine prostaglandin E2 (PGE2) induces the malignant SN12C, but not benign HK2 kidney cell invasion. The PGE2 increases SN12C cell invasion through a signal pathway that encompasses EP2 and EP4, Akt, small GTPase RalA and Ral·GTP inactivator RGC2. The results support the idea that targeted interference of EP2/EP4 signal to RalA·GTP may provide benefit to patients diagnosed with advanced kidney cancer.


Asunto(s)
Carcinoma de Células Renales/patología , Dinoprostona/farmacología , Neoplasias Renales/patología , Proteínas de Unión al GTP ral/fisiología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Evaluación Preclínica de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , ARN Interferente Pequeño/farmacología , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/fisiología , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
11.
Curr Biol ; 22(21): 2063-8, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23063435

RESUMEN

RAL small GTPases, encoded by the Rala and Ralb genes, are members of the RAS superfamily of small GTPases and can act as downstream effectors of RAS [1]. Although highly similar, distinct functions have been identified for RALA and RALB: RALA has been implicated in epithelial cell polarity [2], insulin secretion [3], GLUT4 translocation [4, 5], neurite branching, and neuronal polarity [6, 7], and RALB in tumor cell survival [8], migration/invasion [9-12], TBK1 activation [13], and autophagy [14]. To investigate RAL GTPases in vivo, we generated null and conditional knockout mice. Ralb null mice are viable with no overt phenotype; the Rala null leads to exencephaly and embryonic lethality. The exencephaly phenotype is exacerbated in Rala(-/-);Ralb(+/-) embryos; embryos null for Rala and Ralb do not live past gastrulation. Using a Kras-driven non-small cell lung carcinoma mouse model, we found that either RALA or RALB is sufficient for tumor growth. However, deletion of both Ral genes blocks tumor formation. Either RALA or RALB is sufficient for cell proliferation, but cells lacking both fail to proliferate. These studies demonstrate functions of RAL proteins in development, tumorigenesis, and cell proliferation and show that RALA and RALB act in a redundant fashion.


Asunto(s)
Transformación Celular Neoplásica , Desarrollo Embrionario , Proteínas de Unión al GTP ral/fisiología , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Polaridad Celular , Proliferación Celular , Células Cultivadas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tubo Neural/embriología , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Proteína Oncogénica p21(ras)/metabolismo , Transducción de Señal , Proteínas de Unión al GTP ral/genética
13.
Mol Cell ; 42(5): 650-61, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21658605

RESUMEN

The coordination of the several pathways involved in cell motility is poorly understood. Here, we identify SH3BP1, belonging to the RhoGAP family, as a partner of the exocyst complex and establish a physical and functional link between two motility-driving pathways, the Ral/exocyst and Rac signaling pathways. We show that SH3BP1 localizes together with the exocyst to the leading edge of motile cells and that SH3BP1 regulates cell migration via its GAP activity upon Rac1. SH3BP1 loss of function induces abnormally high Rac1 activity at the front, as visualized by in vivo biosensors, and disorganized and instable protrusions, as revealed by cell morphodynamics analysis. Consistently, constitutively active Rac1 mimics the phenotype of SH3BP1 depletion: slow migration and aberrant cell morphodynamics. Our finding that SH3BP1 downregulates Rac1 at the motile-cell front indicates that Rac1 inactivation in this location, as well as its activation by GEF proteins, is a fundamental requirement for cell motility.


Asunto(s)
Movimiento Celular/fisiología , Proteínas Activadoras de GTPasa/fisiología , Proteína de Unión al GTP rac1/metabolismo , Animales , Regulación hacia Abajo , Activación Enzimática , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Silenciador del Gen , Centro Organizador de los Microtúbulos/fisiología , Centro Organizador de los Microtúbulos/ultraestructura , Ratas , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Proteína de Unión al GTP rac1/genética , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/fisiología
14.
J Immunol ; 185(5): 2942-50, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20679536

RESUMEN

Phagocytosis is an essential element of the immune response permitting the elimination of pathogens, cellular debris, apoptotic cells, and tumor cells. Recently, both phospholipase D (PLD) isoforms, PLD1 and PLD2, were shown to be necessary for efficient FcgammaR-mediated phagocytosis. In this study, we investigated the role of a potential PLD regulator, the Ral GTPases RalA and RalB, in murine RAW 264.7 macrophages. Both Ral isoforms are expressed in macrophages and are transiently activated following FcgammaR stimulation. When Ral expression levels were varied using Ral mutants or interference RNA, phagocytosis assays revealed that Ral isoforms have antagonistic effects; RalA is a positive modulator, whereas RalB plays a negative role. We then focused on RalA and its possible relationship with PLD. The increase in PLD activity that occurs when phagocytosis is stimulated was inhibited in cells with reduced RalA protein, but it was unaffected by reduced levels of RalB. Furthermore, in macrophages transfected with dsRed-RalA and GFP-PLD1 or GFP-PLD2, RalA colocalized with PLD1 and PLD2 at the phagocytic cup during phagosome formation. Additional results obtained from immunoprecipitation of PLD from macrophages transfected with myc-RalA and hemagglutinin-tagged PLD1 or PLD2 indicated an enhanced interaction of RalA with both PLD isoforms during phagocytic stimulation. The increase in RalA and PLD1 interaction was transient and correlated with the time course of RalA activation. These findings reveal a novel pathway involving RalA and PLD in the regulation of FcgammaR-mediated phagocytosis.


Asunto(s)
Fagocitosis/inmunología , Fosfolipasa D/metabolismo , Receptores de IgG/fisiología , Proteínas de Unión al GTP ral/fisiología , Animales , Células Cultivadas , Regulación hacia Abajo/inmunología , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Fagosomas/enzimología , Fagosomas/inmunología , Ácidos Fosfatidicos/fisiología , Isoformas de Proteínas/fisiología , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología
15.
Int J Radiat Oncol Biol Phys ; 78(1): 205-12, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20619549

RESUMEN

PURPOSE: Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases RalA and RalB are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole-body irradiation, but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. METHODS AND MATERIALS: RalA, RalB, and their major effectors RalBP1 and Sec5 were knocked down by stable expression of short hairpin RNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, gammaH2AX expression for double-strand DNA breaks (DSBs), and poly(ADP-ribose)polymerase (PARP) cleavage for apoptosis. RESULTS: Knockdown of K-Ras, RalA, or RalB reduced colony-forming ability post-IR, and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. CONCLUSIONS: Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either the RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Supervivencia Celular/efectos de la radiación , Proteínas Activadoras de GTPasa/fisiología , Tolerancia a Radiación/fisiología , Proteínas de Unión al GTP ral/fisiología , Línea Celular , Supervivencia Celular/fisiología , Ensayo de Unidades Formadoras de Colonias/métodos , Técnicas de Silenciamiento del Gen , Genes ras/genética , Humanos , Secuencias Invertidas Repetidas/fisiología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/radioterapia , Tolerancia a Radiación/genética
16.
PLoS Biol ; 7(9): e1000187, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19823667

RESUMEN

Long-term depression (LTD) is a long-lasting activity-dependent decrease in synaptic strength. NMDA receptor (NMDAR)-dependent LTD, an extensively studied form of LTD, involves the endocytosis of AMPA receptors (AMPARs) via protein dephosphorylation, but the underlying mechanism has remained unclear. We show here that a regulated interaction of the endocytic adaptor RalBP1 with two synaptic proteins, the small GTPase RalA and the postsynaptic scaffolding protein PSD-95, controls NMDAR-dependent AMPAR endocytosis during LTD. NMDAR activation stimulates RalA, which binds and translocates widespread RalBP1 to synapses. In addition, NMDAR activation dephosphorylates RalBP1, promoting the interaction of RalBP1 with PSD-95. These two regulated interactions are required for NMDAR-dependent AMPAR endocytosis and LTD and are sufficient to induce AMPAR endocytosis in the absence of NMDAR activation. RalA in the basal state, however, maintains surface AMPARs. We propose that NMDAR activation brings RalBP1 close to PSD-95 to promote the interaction of RalBP1-associated endocytic proteins with PSD-95-associated AMPARs. This suggests that scaffolding proteins at specialized cellular junctions can switch their function from maintenance to endocytosis of interacting membrane proteins in a regulated manner.


Asunto(s)
Endocitosis/fisiología , Proteínas Activadoras de GTPasa/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Proteínas de Unión al GTP ral/fisiología , Animales , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Fosforilación , Ratas , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Unión al GTP ral/genética
17.
EMBO J ; 27(18): 2375-87, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18756269

RESUMEN

The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobilization of the exocyst for two spatially and kinetically distinct steps of cytokinesis. RalA is required to tether the exocyst to the cytokinetic furrow in early cytokinesis. RalB is then required for recruitment of the exocyst to the midbody of this bridge to drive abscission and completion of cytokinesis. The collaborative action of RalA and RalB is specified by discrete subcellular compartmentalization and unique pairs of RalGEF proteins that provide inputs from both Ras-family protein-dependent and protein-independent regulatory cues. This suggests that Ral GTPases integrate diverse upstream signals to choreograph multiple roles for the exocyst in mitotic progression.


Asunto(s)
Citocinesis , Regulación de la Expresión Génica , Proteínas de Unión al GTP ral/fisiología , Factor de Intercambio de Guanina Nucleótido ral/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Células HeLa , Humanos , Cinética , Mitosis , Modelos Biológicos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Proteínas ras/metabolismo
18.
Methods Enzymol ; 438: 321-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18413258

RESUMEN

The Ras-like GTPases, RalA and RalB, are key components of the oncogenic Ras signaling network. Recent evidence suggests that RalA and RalB collaborate to support tumorigenic transformation through distinct cell regulatory events. While RalA is apparently required to bypass normal restraints on cell proliferation, RalB is required to bypass normal restraints on cell survival. A direct Ral effector protein, Sec5, is a subunit of the exocyst complex, and is required to mediate RalB-dependent survival signals in transformed cells. Further analysis identified TBK1, a key mediator of the host defense response to viral challenge, as a novel Sec5 interacting protein essential for the capacity of RalB and Sec5 to deflect cell death in transformed cells. RalB activation promotes a direct interaction between Sec5 and TBK1 that results in TBK1 kinase activation via an unknown mechanism. Accordingly, both RalB and Sec5 are required for initiating host defense pathway activation upon virus infection. These observations revealed a novel relationship between molecular components of cell-autonomous innate immune signaling pathways and oncogenic transformation, and identified TBK1 as a potential target for therapeutic intervention in cancer. Here we describe details of methods, including protein complex analysis, protein kinase assays, host defense-response pathway activation, and cell transformation analysis, that can be used to investigate the contribution of the RalB-Sec5-TBK1 signaling cascade to both innate immune signaling and cell transformation.


Asunto(s)
Transformación Celular Neoplásica , Inmunidad Innata/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Transporte Vesicular/fisiología , Proteínas de Unión al GTP ral/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Apoptosis , Humanos , Factor 3 Regulador del Interferón/fisiología , Interferón beta/biosíntesis , Ratones , Proteínas de Unión al ARN , Transducción de Señal , Factor de Transcripción ReIA/fisiología , Factores de Transcripción/biosíntesis
19.
J Biol Chem ; 283(26): 17939-45, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18426794

RESUMEN

RalA is a small GTPase that is thought to facilitate exocytosis through its direct interaction with the mammalian exocyst complex. In this study, we report an essential role for RalA in regulated insulin secretion from pancreatic beta cells. We employed lentiviral-mediated delivery of RalA short hairpin RNAs to deplete endogenous RalA protein in mouse pancreatic islets and INS-1 beta cells. Perifusion of mouse islets depleted of RalA protein exhibited inhibition of both first and second phases of glucose-stimulated insulin secretion. Consistently, INS-1 cells depleted of RalA caused a severe inhibition of depolarization-induced insulin exocytosis determined by membrane capacitance, including a reduction in the size of the ready-releasable pool of insulin granules and a reduction in the subsequent mobilization and exocytosis of the reserve pool of granules. Collectively, these data suggest that RalA is a critical component in biphasic insulin release from pancreatic beta cells.


Asunto(s)
Regulación de la Expresión Génica , Células Secretoras de Insulina/citología , Insulina/metabolismo , Proteínas de Unión al GTP ral/fisiología , Animales , Apoptosis , Exocitosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas
20.
Oncogene ; 26(12): 1731-8, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16964283

RESUMEN

Prostate cancer mortality is primarily due to failure to cure patients with metastatic disease. In its early stages, prostate cancer growth is enhanced by androgens. As such, the primary therapy for advanced (locally extensive or metastatic) prostate cancer consists of androgen deprivation therapy by pharmacotherapeutic or surgical means. Eventually, the tumor recurs owing to a transition from androgen-dependence to a highly metastatic and androgen refractory (androgen depletion-independent) phenotype. As the detailed molecular mechanism underlying this transition to a more aggressive phenotype is poorly understood, it has been difficult to develop effective treatments for this advanced stage of the disease. We have previously reported an increase in vascular endothelial growth factor-C (VEGF-C) expression in human prostate cancer cells after androgen withdrawal. We have also shown increased expression of the androgen receptor co-activator BAG-1L by VEGF-C, suggesting the involvement of this growth factor in transactivation of the androgen receptor, even at low concentrations of androgen. In our present study, we show that androgen deprivation of human prostate carcinoma cells activates the small GTPase, RalA, a molecule important for human oncogenesis. RalA activation leads to VEGF-C upregulation. We also show that elevated levels of intracellular reactive oxygen species in prostate cancer cells under androgen-ablated conditions is the major inducer of RalA activation and VEGF-C synthesis.


Asunto(s)
Andrógenos/deficiencia , Neoplasias de la Próstata/metabolismo , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Proteínas de Unión al GTP ral/fisiología , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...