RESUMEN
Glycosaminoglycans (GAGs), including heparan sulfates and chondroitin sulfates, are major components of the extracellular matrix. Upon interacting with heparin binding growth factors (HBGF), GAGs participate to the maintaintenance of tissue homeostasis and contribute to self-healing. Although several processes regulated by HBGF are altered in Alzheimer's disease, it is unknown whether the brain GAG capacities to bind and regulate the function of HBGF or of other heparin binding proteins, as tau, are modified in this disease. Here, we show that total sulfated GAGs from hippocampus of Alzheimer's disease have altered capacities to bind and potentiate the activities of growth factors including FGF-2, VEGF, and BDNF while their capacity to bind to tau is remarkable increased. Alterations of GAG structures and capacities to interact with and regulate the activity of heparin binding proteins might contribute to impaired tissue homeostasis in the Alzheimer's disease brain.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas tau/fisiología , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Brasil , Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Unión Proteica , Lóbulo Temporal/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Tau is a protein that is highly enriched in neurons and was originally defined by its ability to bind and stabilize microtubules. However, it is now becoming evident that the functions of tau extend beyond its ability to modulate microtubule dynamics. Tau plays a role in mediating axonal transport, synaptic structure and function, and neuronal signaling pathways. Although tau plays important physiological roles in neurons, its involvement in neurodegenerative diseases, and most prominently in the pathogenesis of Alzheimer disease (AD), has directed the majority of tau studies. However, a thorough knowledge of the physiological functions of tau and its post-translational modifications under normal conditions are necessary to provide the foundation for understanding its role in pathological settings. In this review, we will focus on human tau, summarizing tau structure and organization, as well as its posttranslational modifications associated with physiological processes. We will highlight possible mechanisms involved in mediating the turnover of tau and finally discuss newly elucidated tau functions in a physiological context.
Asunto(s)
Encéfalo , Proteínas tau/fisiología , Humanos , Proteínas tau/químicaRESUMEN
BACKGROUND: The aim of our research work was to quantify total flavonoid contents in the leaves of 13 plant species family Asteraceae, 8 representatives of family Lamiaceae and 9 plant species belonging to familyRosaceae, using the multiplex fluorimetric sensor. Fluorescence was measured using optical fluorescence apparatus Multiplex(R) 3 (Force-A, France) for non-destructive flavonoids estimation. The content of total flavonoids was estimated by FLAV index (expressed in relative units), that is deduced from flavonoids UV absorbing properties. RESULTS: Among observed plant species, the highest amount of total flavonoids has been found in leaves ofHelianthus multiflorus (1.65 RU) and Echinops ritro (1.27 RU), Rudbeckia fulgida (1.13 RU) belonging to the family Asteraceae. Lowest flavonoid content has been observed in the leaves of marigold (Calendula officinalis) (0.14 RU) also belonging to family Asteraceae. The highest content of flavonoids among experimental plants of family Rosaceae has been estimated in the leaves of Rosa canina (1.18 RU) and among plant species of family Lamiaceae in the leaves of Coleus blumei (0.90 RU). CONCLUSIONS: This research work was done as pre-screening of flavonoids content in the leaves of plant species belonging to family Asteraceae, Lamiaceae and Rosaceae. Results indicated that statistically significant differences (P > 0.05) in flavonoids content were observed not only between families, but also among individual plant species within one family.
Asunto(s)
Animales , Humanos , Ratones , Relojes Biológicos/genética , Caseína Cinasa 1 épsilon/deficiencia , Ritmo Circadiano/genética , Mutación , Proteínas tau/deficiencia , Proteínas tau/metabolismo , Línea Celular , Células Cultivadas , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Caseína Cinasa 1 épsilon/fisiología , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Proteínas Circadianas Period , Fosforilación , Núcleo Supraquiasmático/fisiología , Factores de Tiempo , Proteínas tau/fisiologíaRESUMEN
Cultured catecholamine-differentiated cells [which lack the microtubule-associated proteins (MAPs): MAP1B, MAP2, Tau, STOP, and Doublecortin] proliferate in the presence of fetal bovine serum, and, in its absence, cease dividing and generate processes similar to the neurites of normal neurons. The reintroduction of serum induces neurite retraction, and proliferation resumes. The neurite retraction process in catecholamine-differentiated cells was partially characterized in this study. Microtubules in the cells were found to be in a highly dynamic state, and tubulin in the microtubules consisted primarily of the tyrosinated and deacetylated isotypes. Increased levels of acetylated or Δ2-tubulin (which are normally absent) did not prevent serum-induced neurite retraction. Treatment of differentiated cells with lysophosphatidic acid or adenosine deaminase induced neurite retraction. Inhibition of Rho-associated protein kinase, ATP depletion and microfilament disruption each (individually) blocked serum-induced neurite retraction, suggesting that an ATP-dependent actomyosin system underlies the mechanism of neurite retraction. Nocodazole treatment induced neurite retraction, but this effect was blocked by pretreatment with the microtubule-stabilizing drug paclitaxel (Taxol). Paclitaxel did not prevent serum-induced or lysophosphatidic acid-induced retraction, suggesting that integrity of microtubules (despite their dynamic state) is necessary to maintain neurite elongation, and that paclitaxel-induced stabilization alone is not sufficient to resist the retraction force induced by serum. Transfection with green fluorescent protein-Tau conferred resistance to retraction caused by serum. We hypothesize that, in normal neurons (cultured or in vivo), MAPs are necessary not only to stabilize microtubules, but also to establish interactions with other cytoskeletal or membrane components to form a stable structure capable of resisting the retraction force.
Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Neuritas/fisiología , Neuronas/ultraestructura , Proteínas tau/fisiología , Actomiosina/fisiología , Adenosina Trifosfato/fisiología , Animales , Catecolaminas/farmacología , Bovinos , Línea Celular Tumoral , Medios de Cultivo/farmacología , Medio de Cultivo Libre de Suero/farmacología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/ultraestructura , Genes Reporteros , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/fisiología , Neuritas/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Paclitaxel/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Tubulina (Proteína)/genética , Tubulina (Proteína)/fisiología , Proteínas tau/genéticaRESUMEN
OBJECTIVES: The inhibition of acetylcholinesterase (AChE), the key enzyme in the breakdown of acetylcholine, is currently the main pharmacological strategy available for Alzheimer's disease (AD). In this sense, many alkaloids isolated from natural sources, such as physostigmine, have been long recognized as acetyl- and butyrylcholinesterase (BChE) inhibitors. Since the approval of galantamine for the treatment of AD patients, the search for new anticholinesterase alkaloids has escalated, leading to promising candidates such as huperzine A. This review aims to summarize recent advances in current knowledge on alkaloids as AChE and BChE inhibitors, highlighting structure-activity relationship (SAR) and docking studies. KEY FINDINGS: Natural alkaloids belonging to the steroidal/triterpenoidal, quinolizidine, isoquinoline and indole classes, mainly distributed within Buxaceae, Amaryllidaceae and Lycopodiaceae, are considered important sources of alkaloids with anti-enzymatic properties. Investigations into the possible SARs for some active compounds are based on molecular modelling studies, predicting the mode of interaction of the molecules with amino acid residues in the active site of the enzymes. Following this view, an increasing interest in achieving more potent and effective analogues makes alkaloids good chemical templates for the development of new cholinesterase inhibitors. SUMMARY: The anticholinesterase activity of alkaloids, together with their structural diversity and physicochemical properties, makes them good candidate agents for the treatment of AD.
Asunto(s)
Alcaloides/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/uso terapéutico , Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Colinesterasas/fisiología , Humanos , Isoquinolinas/uso terapéutico , Simulación del Acoplamiento Molecular , Monoterpenos/uso terapéutico , Quinolizidinas/uso terapéutico , Relación Estructura-Actividad , Triterpenos/uso terapéutico , Proteínas tau/fisiologíaRESUMEN
Neuroinflammation is a process related to the onset of several neurodegenerative disorders, including Alzheimer's disease (AD). Increasing sets of evidence support the major role of deregulation of the interaction patterns between glial cells and neurons in the pathway toward neuronal degeneration, a process we are calling neuroimmunomodulation in AD. On the basis of the hypothesis that pathological tau aggregates induce microglial activation with the subsequent events of the neuroinflammatory cascade, we have studied the effects of tau oligomeric species and filamentous structures over microglial cells in vitro. Tau oligomers and fibrils were induced by arachidonic acid and then their actions assayed upon addition to microglial cells. We showed activation of the microglia, with significant morphological alterations as analyzed by immunofluorescence. The augmentation of nitrites and the proinflammatory cytokine IL-6 was evaluated in ELISA assays. Furthermore, conditioned media of stimulated microglia cells were exposed to hippocampal neurons generating altered patterns in these cells, including shortening of neuritic processes and cytoskeleton reorganization.
Asunto(s)
Amiloide/fisiología , Microglía/metabolismo , Microglía/patología , Proteínas tau/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Humanos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-DawleyRESUMEN
Tauopathies are a family of neurodegenerative diseases that have the pathological hallmark of intraneuronal accumulation of filaments composed of hyperphosphorylated tau proteins that tend to aggregate in an ultrastructure known as neurofibrillary tangles. The identification of mutations on the tau gene in familial cases of tauopathies underscores the pathological role of the tau protein. However, the molecular process that underlines tau-mediated neurodegeneration is not understood. Here, a proteomics approach was used to identify proteins that may be affected during the course of tau-mediated neurodegeneration in the tauopathy mouse model JNPL3. The JNPL3 mice express human tau proteins bearing a P301L mutation, which mimics the neurodegenerative process observed in humans with tauopathy. The results showed that the protein amphiphysin-1 (AMPH1) is significantly reduced in terminally ill JNPL3 mice. Specifically, the AMPH1 protein level is reduced in brain regions known to accumulate aggregates of hyperphosphorylated tau proteins. The AMPH1 protein reduction was validated in Alzheimer's disease cases. Taken together, the results suggest that the reduction of the AMPH1 protein level is a molecular event associated with the progression of tau-mediated neurodegeneration.
Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/fisiología , Anciano , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Agregación Celular/genética , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fosforilación/genética , Tauopatías/genética , Proteínas tau/metabolismoRESUMEN
Existe creciente evidencia derivada de modelos experimentales in vitro, cultivos celulares y modelos animales que sugiere el efecto de la anestesia sobre la degeneración neuronal y una interacción entre la cirugía, la anestesia y la neuropatología denominada Alzheimer. También existe la firme creencia de que los ancianos corren el riesgo de sufrir deterioro cognitivo transitorio, aunque también puede ser persistente, después de haber sido sometidos a una cirugía mayor, y ese deterioro puede estar asociado a muerte o debilidad. En este trabajo revisamos brevemente los fundamentos básicos de la enfermedad de Alzheimer y su interacción con la anestesia general, y los pocos datos clínicos en humanos que han sido utilizados para proponer una posible asociación entre la anestesia general y las demencias. (AU)
Asunto(s)
Humanos , Anciano , Anestesia General , Demencia/complicaciones , Demencia/etiología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Factores de Edad , Proteínas tau/fisiología , Precursor de Proteína beta-Amiloide/fisiología , Cerebro/efectos de los fármacos , Cerebro/metabolismo , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/etiología , Complicaciones PosoperatoriasRESUMEN
Existe creciente evidencia derivada de modelos experimentales in vitro, cultivos celulares y modelos animales que sugiere el efecto de la anestesia sobre la degeneración neuronal y una interacción entre la cirugía, la anestesia y la neuropatología denominada Alzheimer. También existe la firme creencia de que los ancianos corren el riesgo de sufrir deterioro cognitivo transitorio, aunque también puede ser persistente, después de haber sido sometidos a una cirugía mayor, y ese deterioro puede estar asociado a muerte o debilidad. En este trabajo revisamos brevemente los fundamentos básicos de la enfermedad de Alzheimer y su interacción con la anestesia general, y los pocos datos clínicos en humanos que han sido utilizados para proponer una posible asociación entre la anestesia general y las demencias.
Asunto(s)
Humanos , Anciano , Anestesia General , Demencia/complicaciones , Demencia/etiología , Enfermedad de Alzheimer/complicaciones , Factores de Edad , Cerebro , Cerebro/metabolismo , Enfermedad de Alzheimer/metabolismo , Complicaciones Posoperatorias , Precursor de Proteína beta-Amiloide/fisiología , Proteínas tau/fisiología , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/etiologíaRESUMEN
Interleukin-3 (IL-3) regulates the proliferation, survival and differentiation of haematopoietic cells via interaction with specific cell-surface receptors. IL-3 is expressed in several non-hematopoietic cell types. Studies have demonstrated the presence of IL-3 in the central nervous system, however, its physiological role in these cells is poorly understood. Previously we have been demonstrated that IL-3 prevents neuronal death induced by fibrillary ß amyloid in these cells, by PI 3-kinase and Jak/STAT pathway activation. In this study, we demonstrated that IL-3 significantly reduced Aß-promoted neurite degeneration and toxicity. Thus, this cytokine provides cellular protection against Aß neurotoxicity in primary cortical neuronal cells, by modulating microtubular dynamics and prevention of tau cleavage and hyperphosphorylation. We also demonstrates that IL-3 is expressed in the "in vivo" mouse model of AD, Tg2576, which also expresses human AßPP with the Swedish mutation. In summary, these results suggest that IL-3 could play a neuroprotective role in AD.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Citoprotección/fisiología , Interleucina-3/fisiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Animales , Células Cultivadas , Citoprotección/efectos de los fármacos , Humanos , Interleucina-3/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/patología , Proteínas tau/fisiologíaRESUMEN
Many hypotheses have been raised regarding the pathophysiology of Alzheimer's disease (AD). Because amyloid beta peptide (Abeta) deposition in senile plaques appears as a late, nonspecific event, recent evidence points to tau phosphorylation and aggregation as the final common pathway in this multifactorial disease. Current approaches that provide evidence in favor of neuroimmunomodulation in AD and the roles of tau pathological modifications and aggregation into oligomers and filamentous forms are presented. We propose an integrative model on the pathogenesis of AD that includes several damage signals such as Abeta oligomers, oxygen free radicals, iron overload, homocysteine, cholesterol and LDL species. These activate microglia cells, releasing proinflammatory cytokines and producing neuronal degeneration and tau pathological modifications. Altered and aggregated forms of tau appear to act as a toxic stimuli contributing to neurodegeneration. Recent findings provide further support to the central role of tau in the pathogenesis of AD, so this protein has turned into a diagnostic and therapeutic target for this disease.
Asunto(s)
Enfermedad de Alzheimer/etiología , Modelos Neurológicos , Proteínas tau/fisiología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Animales , Humanos , Ratones , Neuroinmunomodulación , Multimerización de Proteína , Transducción de Señal , Proteínas tau/química , Proteínas tau/inmunologíaRESUMEN
We are analyzing the physiological function of Tau protein and its abnormal pathological behavior when this protein is self-assemble into pathological filaments. These aggregates of Tau protein are the main components in many diseases such as Alzheimer's disease (AD). Recent studies suggest that Tau acquires complex oligomeric conformations which may be toxic. In this review, we emphasized the possible phenomena implicated in the formation of these oligomers. Studies with chemical inductors indicates that the microtubule-binding domain is the most important region involved in Tau aggregation and showed the requirement of a pre-arrange Tau in abnormal conformation to promote self-assembly. Transgenic animal models and AD neuropathology studies showed that post-translational modifications are also implicated in Tau aggregation and neural cell death during AD development. Therefore, we analyzed some events that could be present during Tau aggregation. Finally, we included a brief discussion of the possible relation between glucose metabolism dysfunction in AD, and data of Tau aggregation by using aggregation inhibitors. In conclusion, the process Tau aggregation deserves further investigations to design possible therapeutic targets to inhibit the toxicity of these aggregates and it is possible that could be extended to other diseases with similar etiology.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ovillos Neurofibrilares/metabolismo , Proteínas tau/fisiología , Enfermedad de Alzheimer/etiología , Animales , Humanos , Ovillos Neurofibrilares/patología , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteínas tau/toxicidadRESUMEN
Abnormal posttranslational modifications of tau protein lead it to aggregate into paired helical filaments in Alzheimer's disease (AD). The mechanisms involved in the early pathological processing of tau and the induction of a polymeric state seem to progress through a sequential pattern of changes mainly involving abnormal phosphorylation, conformational changes and truncation. While proteolytic cleavage of tau protein during the progression of AD has not been comprehensively analyzed, tau is a substrate for several intracellular proteases. Furthermore, abnormal regulation of proteolytic events, including those associated with apoptosis, may generate truncated tau subproducts which in turn may be toxic to neurons per se and capable of polymerization at a faster rate. Accumulation of tau fibrils has long been controversial, with much debate concerning the true toxicity of polymerized tau. The development of different transgenic mice overexpressing tau protein, the generation of cell models expressing tau, and the in vitro polymerization paradigms have significantly enhanced our understanding of the biophysics and pathological properties of tau polymers in AD, as well as in other tau pathologies. This review will discuss the pathological role of truncated tau protein in the context of toxicity and neurofibrillary tangle formation and maturation and its significance in clinical dementia.
Asunto(s)
Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Proteínas tau/fisiología , Animales , Línea Celular , HumanosRESUMEN
Tau protein is a predominantly neuronal microtubule-associated protein that is enriched in axons and is capable of promoting microtubule assembly and stabilization. In the present article we review some of the key experiments directed to obtain insights about tau protein function in developing neurons. Aspects related to whether or not tau has essential, unique, or complementary functions during axonal formation are discussed.
Asunto(s)
Axones/fisiología , Proteínas tau/fisiología , Animales , Humanos , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructuraRESUMEN
As a result of recent investigations, the cytoskeleton can be viewed as a cytoplasmic system of interconnected filaments with three major integrative levels: self-assembling macromolecules, filamentous polymers, e.g., microtubules, intermediate filaments and actin filaments, and supramolecular structures formed by bundles of these filaments or networks resulting from cross-bridges between these major cytoskeletal polymers. The organization of this biological structure appears to be sensitive to fine spatially and temporally dependent regulatory signals. In differentiating neurons, regulation of cytoskeleton organization is particularly relevant, and the microtubule-associated protein (MAP) tau appears to play roles in the extension of large neuritic processes and axons as well as in the stabilization of microtubular polymers along these processes. Within this context, tau is directly involved in defining neuronal polarity as well as in the generation of neuronal growth cones. There is increasing evidence that elements of the extracellular matrix contribute to the control of cytoskeleton organization in differentiating neurons, and that these regulations could be mediated by changes in MAP activity. In this brief review, we discuss the possible roles of tau in mediating the effects of extracellular matrix components on the internal cytoskeletal arrays and its organization in growing neurons.
Asunto(s)
Matriz Extracelular/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas/fisiología , Proteínas tau/fisiología , Proteínas del Citoesqueleto , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Factores de Crecimiento Nervioso , NeuroglíaRESUMEN
As a result of recent investigations, the cytoskeleton can be viewed as a cytoplasmic system of interconnected filaments with three major integrative levels: self-assembling macromolecules, filamentous polymers, e.g., microtubules, intermediate filaments and actin filaments, and supramolecular structures formed by bundles of these filaments or networks resulting from cross-bridges between these major cytoskeletal polymers. The organization of this biological structure appears to be sensitive to fine spatially and temporally dependent regulatory signals. In differentiating neurons, regulation of cytoskeleton organization is particularly relevant, and the microtubule-associated protein (MAP) tau appears to play roles in the extension of large neuritic processes and axons as well as in the stabilization of microtubular polymers along these processes. Within this context, tau is directly involved in defining neuronal polarity as well as in the generation of neuronal growth cones. There is increasing evidence that elements of the extracellular matrix contribute to the control of cytoskeleton organization in differentiating neurons, and that these regulations could be mediated by changes in MAP activity. In this brief review, we discuss the possible roles of tau in mediating the effects of extracellular matrix components on the internal cytoskeletal arrays and its organization in growing neurons
Asunto(s)
Matriz Extracelular/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas/fisiología , Proteínas tau/fisiología , Proteínas del Citoesqueleto , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Factores de Crecimiento Nervioso , NeuroglíaRESUMEN
Tau proteins play major regulatory roles in the organization and integrity of the cytoskeletal network. In neurons, a specific axonal compartmentalization of tau has been shown. However, recent studies demonstrate that tau displays a widespread distribution in a variety of non-neuronal cell types. These proteins have been found in human fibroblasts and in several transformed cell lines. The heterogeneous family of tau is formed by a set of molecular species that share common peptide sequences. There is a single gene that contains several exons encoding for the six different tau isoforms in mammalian brain. Alternative splicing of a common RNA transcript as well as post-translational modifications contribute to its heterogeneity. Tau isoforms generated by splicing differ from one another by having either three or four repeats in their C-terminal half, and a variable number of inserts in their N-terminal moiety. These repeats have been shown to constitute microtubule-binding motifs. In this review some relevant aspects of tau function and its regulation are analyzed. Three major topics are discussed. The first one focuses on the tau roles in regulating the interactions between microtubules with actin filaments and with intermediate filament systems. Another problem deals with the question of whether tau isoforms segregate into functionally different subsets of microtubules in axonal processes, or tau associates with these polymers in a random fashion. The third question that emerges is the involvement of tau and tau-like proteins in morphogenetic events. The regulation of the interactions of DMAP-85, a recently discovered tau-like protein, with the cytoskeleton during development of Drosophila melanogaster is analyzed.
Asunto(s)
Proteínas de Microtúbulos/fisiología , Neuronas/fisiología , Proteínas tau/fisiología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Sitios de Unión , Diferenciación Celular/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Datos de Secuencia Molecular , Proteínas tau/inmunologíaRESUMEN
Tau proteins play major regulatory roles in the organization and integrity of the cystoskeletal networks. In neurons, a specific axonal compartmentalization of tau has been shown. However, recent studies demonstrate that tau displays a widespread distribution in a variety of non-neuronal cell types. These proteins have been found in human fibroblasts and in several transformed cell lines. The heterogenous family of tau is formed by a set of molecular species that share common peptide sequences. There is a single gene that contains several exons enconding for the six different tau isoforms in mammalian brain. Alternative splicing of a common RNA transcript as well as post-translational modifications contribute to its heterogeneity. Tau isoforms generated by splicing differ from one another by having either three or four repeats in their C-terminal half, and a variable number of inserts in their N-terminal moiety. These repeats have been shown to constitute microtubule-binding motifs. In this review some relevant aspects of tau function and its regulation are analysed. Three major topics are discussed. The first one focuses on the tau roles in regulating the interactions between microtubules with actin filaments and with intermediate filment systems. Another problem deals with the question of whether tau isoforms segregate into functionally different subsets of microtubules in axonal processes, or tau associates with these polymers in a random fashion. The third question that emerges is the involvement of tau and tau-like proteins in morphogenetic events. The regulation of the interactions of DMAP-85, a recently discovered tau-like protein, with the cytoskeleton during development of Drosophila melanogaster is analyzed.
Asunto(s)
Animales , Anticuerpos Monoclonales/inmunología , Drosophila melanogaster/crecimiento & desarrollo , Neuronas/fisiología , Proteínas de Microtúbulos/fisiología , Proteínas tau/fisiología , Sitios de Unión , Diferenciación Celular/fisiología , Proteínas tau/inmunología , Química EncefálicaRESUMEN
We report here a novel intracellular localization and function of Tau proteins in cultured cerebellar neurons. Immunofluorescence staining of detergent-extracted cytoskeletons with antibodies specific for Tau proteins revealed intense labeling of growth cone microtubules. Besides, suppression of Tau by antisense oligonucleotide treatment results in the complete disappearance of antigen 13H9, a specific growth cone component with properties of microfilament- and microtubule-associated protein [Goslin et al., 1989: J. Cell Biol. 109:1621-1631], from its normal intracellular location. This phenomenon is unique to neurite-bearing cells, is not associated with the disappearance of microtubules from growth cones, and is not reversed by taxol, a microtubule-stabilizing agent. In addition, Tau-suppressed neurons display a significant reduction in growth cone area and fillopodial number; on the contrary, fillopodial length increases significantly. The alterations in growth cone morphology are accompanied by considerable changes in the phalloidin staining of assembled actin. Taken together, the present results suggest that in developing neurons Tau proteins participate in mediating interactions between elements of the growth cone cytoskeleton important for maintaining the normal structural organization of this neuritic domain.
Asunto(s)
Citoesqueleto de Actina/fisiología , Neuronas/fisiología , Proteínas tau/fisiología , Citoesqueleto de Actina/química , Actinas/análisis , Animales , Antígenos/análisis , Antígenos/fisiología , División Celular/fisiología , Células Cultivadas , Corteza Cerebelosa/citología , Corteza Cerebelosa/fisiología , Corteza Cerebelosa/ultraestructura , Citoesqueleto/química , Citoesqueleto/fisiología , Citoesqueleto/ultraestructura , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/química , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Neuronas/química , Neuronas/citología , Neuronas/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Paclitaxel/farmacología , Ratas , Proteínas tau/análisisRESUMEN
La enfermedad de Alzheimer (EA) es una tendencia progresiva que afecta al adulto mayor y cuyas lesiones características son: las placas seniles, los ovillos neurofibrilares y los depósitos vasculares de amiloide. Uno de los componentes principales de las placas seniles es el péptido beta-amiloide (A4), cuya proteína precursora esta codificada en el cromosoma 21. La EA además está relacionada con los cromosomas 14 y 19. En este último se encuentra el gen de la poliproteína E (apoE). La apoE es una proteína de gran importancia en el sistema nervioso, que también se encuentra en las tres lesiones características de la EA. Parte de su función se relaciona con la reparación neuronal, debido a su capacidad de transportar lípidos a los sitios de regeneración. Existen 3 alelos para la apoE, el e2, el e3 y el e4, siendo el alelo e3 el más frecuente en la población mundial. Interesantemente, existe una correlación positiva entre el alelo e4 de la apoE y la EA, constituyendo este alelo un factor de riesgo para la enfermedad. Esta y otras evidencias han llevado apostular diversas hipótesis acerca de la participación de la apoE en el desarrollo de la EA. Una de ellas se refiere a la interacción entre la apoE4 y el péptido A4, la cual conduciría a la formación de las placas neuríticas. Alternativamente, se postula un papel para la apoE en la formación de los ovillos neurofibrilares. Finalmente, se considera el daño neuronal como un factor de riesgo adicional para la EA, en el que se vería favorecido el encuentro entre la apoE y el A4, con el consiguiente mayor depósito de amiloide en las placas neuríticas