Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Biochem ; 448(1-2): 275-286, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29450800

RESUMEN

Fatty acid uptake and metabolism are often dysregulated in cancer cells. Fatty acid activation is a critical step that allows these biomolecules to enter cellular metabolic pathways such as mitochondrial ß-oxidation for ATP generation or the lipogenic routes that generate bioactive lipids such as the inositol phospholipids. Fatty acid activation by the addition of coenzyme A is catalysed by a family of enzymes called the acyl CoA synthetase ligases (ACSL). Furthermore, enhanced expression of particular ACSL isoforms, such as ACSL4, is a feature of some more aggressive cancers and may contribute to the oncogenic phenotype. This study focuses on ACSL3 and ACSL4, closely related structural homologues that preferentially activate palmitate and arachidonate fatty acids, respectively. In this study, immunohistochemical screening of multiple soft tissue tumour arrays revealed that ACSL3 and ACSL4 were highly, but differentially, expressed in a subset of leiomyosarcomas, fibrosarcomas and rhabdomyosarcomas, with consistent cytoplasmic and granular stainings of tumour cells. The intracellular localisations of endogenously expressed ACSL3 and ACSL4 were further investigated by detailed subcellular fractionation analyses of HT1080 fibrosarcoma and MCF-7 breast cancer cells. ACSL3 distribution closely overlapped with proteins involved in trafficking from the trans-Golgi network and endosomes. In contrast, the ACSL4 localisation pattern more closely followed that of calnexin which is an  endoplasmic reticulum resident chaperone. Confocal immunofluorescence imaging of MCF-7 cells confirmed the intracellular localisations of both enzymes. These observations reveal new information regarding the compartmentation of fatty acid metabolism in cancer cells.


Asunto(s)
Neoplasias de la Mama/enzimología , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/enzimología , Endosomas/enzimología , Fibrosarcoma/enzimología , Proteínas de Neoplasias/metabolismo , Red trans-Golgi/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Coenzima A Ligasas/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Endosomas/genética , Endosomas/patología , Femenino , Fibrosarcoma/genética , Fibrosarcoma/patología , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Red trans-Golgi/genética , Red trans-Golgi/patología
2.
FEBS Lett ; 592(7): 1096-1112, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29210454

RESUMEN

The endosomal system is critical for the maintenance of intracellular homeostasis, and defects in this system are often linked to neurological disorders. The retromer complex is a critical coordinator of endosomal dynamics and has functional roles in multiple cellular processes through sorting cargoes from endosomes to the trans-Golgi network (TGN) or to the plasma membrane. Mammalian retromer comprises a core Vps26-Vps35-Vps29 trimer and associates with a range of proteins to generate endosomal tubular-vesicular carriers. Alterations in retromer function or its molecular organization have been a rising risk factor for Parkinson's disease (PD). Although genetic evidence has shown several variants within retromer in late-onset PD cases, the exact molecular machineries by which retromer variants induce the development of PD are still not completely elucidated. In this Review, we will focus on the functional roles of retromer in neuronal health, summarize advances in defining the cellular pathological phenotype caused by retromer deficiency or PD-linked retromer variants and discuss the potential clues of how retromer deregulation may contribute to PD pathogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas , Neuronas , Enfermedad de Parkinson , Red trans-Golgi , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/genética , Endosomas/metabolismo , Endosomas/patología , Humanos , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Red trans-Golgi/genética , Red trans-Golgi/metabolismo , Red trans-Golgi/patología
3.
Biochem Biophys Res Commun ; 495(2): 1708-1715, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29223392

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the major genetic cause of autosomal-dominantly inherited Parkinson's disease. LRRK2 is implicated in the regulation of intracellular trafficking, neurite outgrowth and PD risk in connection with Rab7L1, a putative interactor of LRRK2. Recently, a subset of Rab GTPases have been reported as substrates of LRRK2. Here we examine the kinase activity of LRRK2 on Rab7L1 in situ in cells. Phos-tag analyses and metabolic labeling assays revealed that LRRK2 readily phosphorylates Golgi-localized wild-type Rab7L1 but not mutant forms that are distributed in the cytoplasm. In vitro assays demonstrated direct phosphorylation of Rab7L1 by LRRK2. Subsequent screening using Rab7L1 mutants harboring alanine-substitution for every single Ser/Thr residue revealed that Ser72 is a major phosphorylation site, which was confirmed by using a phospho-Ser72-specific antibody. Moreover, LRRK2 pathogenic Parkinson mutants altogether markedly enhanced the phosphorylation at Ser72. The modulation of Ser72 phosphorylation in Rab7L1 resulted in an alteration of the morphology and distribution of the trans-Golgi network. These data collectively support the involvement of Rab7L1 phosphorylation in the LRRK2-mediated cellular and pathogenetic mechanisms.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión/genética , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Enfermedad de Parkinson/patología , Fosforilación , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Serina/química , Serina/genética , Especificidad por Sustrato , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1/química , Proteínas de Unión al GTP rab1/genética , Red trans-Golgi/metabolismo , Red trans-Golgi/patología
4.
Biol Cell ; 108(8): 205-18, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27061938

RESUMEN

The trans-Golgi network (TGN) is a major sorting, packing and delivering station of newly synthesised proteins and lipids to their final destination. These cargo molecules follow the secretory pathway, which is a vital part of cellular trafficking machinery in all eukaryotic cells. This secretory pathway is well conserved in all eukaryotes from low-level eukaryotes, such as yeast, to higher level eukaryotes like mammals. The molecular mechanisms of protein sorting by adaptor proteins, membrane elongation and transport to the final destinations by motor proteins and the cytoskeleton, and membrane pinching-off by scission proteins must be choreographically managed for efficient cargo delivery, and the understanding of these detailed processes is not yet completed. Functionally, defects in these mechanisms are associated with the pathology of prominent diseases such as acute myeloid leukaemia, Charcot-Marie-Tooth disease, I-cell disease and Wiskott-Aldrich syndrome. The present review points out the recent advances in our knowledge of the molecular mechanisms involved in the transportation of the cargo from the TGN towards the endosome.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Endosomas/metabolismo , Síndrome de Wiskott-Aldrich/metabolismo , Red trans-Golgi/metabolismo , Animales , Transporte Biológico Activo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Endosomas/genética , Endosomas/patología , Humanos , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patología , Red trans-Golgi/genética , Red trans-Golgi/patología
5.
J Cell Sci ; 126(Pt 13): 2751-60, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23813966

RESUMEN

Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid ß peptides (Aß) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encéfalo/patología , Membrana Celular/patología , Movimiento Celular , Endosomas/metabolismo , Endosomas/patología , Regulación de la Expresión Génica , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Neuronas/patología , Transporte de Proteínas , Proteolisis , Transducción de Señal , Red trans-Golgi/metabolismo , Red trans-Golgi/patología
6.
J Neurochem ; 120(6): 869-80, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22171895

RESUMEN

ß-Site APP-cleaving enzyme (BACE1) cleaves the amyloid precursor protein (APP) at the ß-secretase site to initiate the production of Aß peptides. These accumulate to form toxic oligomers and the amyloid plaques associated with Alzheimer's disease (AD). An increase of BACE1 levels in the brain of AD patients has been mostly attributed to alterations of its intracellular trafficking. Golgi-associated adaptor proteins, GGA sort BACE1 for export to the endosomal compartment, which is the major cellular site of BACE1 activity. BACE1 undergoes recycling between endosome, trans-Golgi network (TGN), and the plasma membrane, from where it is endocytosed and either further recycled or retrieved to the endosome. Phosphorylation of Ser498 facilitates BACE1 recognition by GGA1 for retrieval to the endosome. Ubiquitination of BACE1 C-terminal Lys501 signals GGA3 for exporting BACE1 to the lysosome for degradation. In addition, the retromer mediates the retrograde transport of BACE1 from endosome to TGN. Decreased levels of GGA proteins and increased levels of retromer-associated sortilin have been associated with AD. Both would promote the co-localization of BACE1 and the amyloid precursor protein in the TGN and endosomes. Decreased levels of GGA3 also impair BACE1 degradation. Further understanding of BACE1 trafficking and its regulation may offer new therapeutic approaches for the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/enzimología , Enfermedad de Alzheimer/etiología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Endocitosis , Humanos , Transporte de Proteínas/fisiología , Red trans-Golgi/metabolismo , Red trans-Golgi/patología
7.
Traffic ; 12(8): 948-55, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21382144

RESUMEN

Bidirectional traffic between the Golgi apparatus and the endosomal system sustains the functions of the trans-Golgi network (TGN) in secretion and organelle biogenesis. Export of cargo from the TGN via anterograde trafficking pathways depletes the organelle of sorting receptors, processing proteases, SNARE molecules, and other factors, and these are subsequently retrieved from endosomes via the retrograde pathway. Recent studies indicate that retrograde trafficking is vital to early metazoan development, nutrient homeostasis, and for processes that protect against Alzheimer's and other neurological diseases.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/patología , Endosomas/fisiología , Red trans-Golgi/patología , Red trans-Golgi/fisiología , Animales , Endosomas/metabolismo , Humanos , Transporte de Proteínas , Transducción de Señal , Red trans-Golgi/metabolismo
8.
Curr Neurovasc Res ; 5(3): 178-84, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18691075

RESUMEN

Transforming growth factor2 (TGFbeta2) is a prototypic member of a large superfamily of multifunctional cytokines, and its potential mechanisms of the neuroprotective activity in ischemic stroke and subcellular compartmentalization are largely unknown. The present study investigated TGF-beta2 protein expression in hippocampal neuronal cells after transient forebrain ischemia (TFI). TFI was induced in male adult gerbils with bilateral occlusion of both common carotid arteries for 10 minutes. With immunohistochemical methods we observe the expression of TGF-beta2 and morphological alternation in Golgi appratus (GA) in different postischemic periods and sham-operation (6 hours, 1, 3 and 7 days). In addition, the subcellular localization of TGF-beta2 is determined in trans-Golgi network (TGN) by double-labeling confocal immunofluorographs with TGN38.The results showed that TGF-beta2 persistent express in the ischemic animals and it peaks at 3 days, then decreased 7 days postocclusion. No significant alterations to the GA were noted at the point of 6 hours,1 and 3 days following TFI, but there are a few neurons in which the GA lost the normal network-like configuration and its elements decreased in cortical cells from gerbils survived 7 days postocclusion. In addition, TGF-beta2 was colocalized with TGN38 in the TGN after TFI .Taken together, this result suggested that TGF-beta2 protein expression increased in neurons after ischemia, which may represent an endogenous adaptative response of the brain damage and its secretion via GA after ischemia is supposed to be beneficial for GA . Furthermore, fragmentation of GA is not common phenomenon in the ischemia, but intact GA structural of neurons is beneficial for cell survival.


Asunto(s)
Isquemia Encefálica/metabolismo , Aparato de Golgi/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Gerbillinae , Aparato de Golgi/patología , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Glicoproteínas de Membrana/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuronas/patología , Prosencéfalo/patología , Prosencéfalo/fisiopatología , Factores de Tiempo , Regulación hacia Arriba/fisiología , Red trans-Golgi/metabolismo , Red trans-Golgi/patología
9.
Methods Mol Biol ; 341: 127-39, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16799195

RESUMEN

Asiatic cholera is a rapidly progressing disease resulting in extreme diarrhea and even death. The causative agent, cholera toxin, is an AB5-subunit enterotoxin produced by the bacterium Vibrio cholera. The toxin must enter the intestinal cell to cause disease. Entry is achieved by the B-subunit binding to a membrane lipid that carries the toxin all the way from the plasma membrane through the trans-Golgi to the endoplasmic reticulum (ER). Once in the ER, a portion of the A-subunit, the A1 chain, unfolds and separates from the B-subunit to retro-translocate to the cytosol. The A1 chain then activates adenylyl cyclase to cause disease. To study this pathway in intact cells, we used a mutant toxin with C-terminal extension of the B-subunit that contains N-glycosylation and tyrosine-sulfation motifs (CT-GS). This provides a biochemical readout for toxin entry into the trans Golgi (by 35S-sulfation) and ER (by N-glycosylation). In this chapter, we describe the methods we developed to study this trafficking pathway.


Asunto(s)
Toxina del Cólera/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Red trans-Golgi/metabolismo , Animales , Western Blotting , Células COS , Chlorocebus aethiops , Cólera/metabolismo , Cólera/patología , Toxina del Cólera/farmacología , Citosol/patología , Retículo Endoplásmico/patología , Glicosilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Células Vero , Red trans-Golgi/patología
10.
J Neurol Sci ; 182(1): 45-50, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11102638

RESUMEN

We studied the Golgi apparatus (GA) and trans-Golgi network (TGN) in the human olivary hypertrophy by immunohistological methods with organelle specific antibodies against the medial cisternae of the organelle (MG160) and the trans-Golgi network (TGN46). The GA and TGN of enlarged neurons in the inferior olivary nuclei in the early stages after central tract lesions lost the normal network-like configuration, and they were reduced to numerous small disconnected granules (fragmentation). In chronic stages after lesions, the GA and TGN of vacuolated or enlarged neurons showed a variety of morphological profiles, such as normal-looking patterns, fragmentation, reduction in number, and aggregation around nuclei or at a distance in the cytoplasm. In patients with multiple system atrophy, the GA and TGN of the neurons in the inferior olivary nuclei showed almost similar findings to those seen in the chronic stages after brainstem lesions. These results suggest that the GA and TGN are affected in degenerating neurons by anterograde transneuronal mechanisms.


Asunto(s)
Aparato de Golgi/patología , Neuronas/patología , Núcleo Olivar/patología , Red trans-Golgi/patología , Anciano , Femenino , Humanos , Hipertrofia/patología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA