Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
Environ Sci Pollut Res Int ; 31(35): 48122-48134, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39017870

ABSTRACT

Indoor house dust is considered an important human exposure route to polybrominated diphenyl ethers (PBDEs), which has raised concern about their environmental persistence and toxicity properties. In this study, eight PBDEs (BDE-28, -47, -99, -100, -153, -154, -183, and -209) were determined in house dust from two cities with different socio-demographic characteristics from Brazil, examining possible relationships with factors that potentially influence contamination (population density, economic activities, presence of electronic equipment, and so on) and also estimating the risk of human exposure through oral ingestion and dermal contact. The Σ8PBDE concentration in Sorocaba city ranged between 380 and 4269 ng/g dw, while in Itapetininga city ranged from 106 to 1000 ng/g dw. In both regions, BDE-209 was the most abundantly found congener, followed by BDE-99. House dust from Sorocaba presented significantly greater concentrations of BDE-183 and BDE-209 than Itapetininga. Regarding risk exposure assessment, the estimated daily intake (EDI) of PBDEs was much lower than their respective reference doses (RfDs) in all pathways estimated (non-dietary ingestion and dermal contact). This study provided valuable data to improve the knowledge about the presence and exposure to PBDEs in Brazilian house dust in comparison to other developing countries and the need to control environmental pollution and protect human health.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Exposure , Halogenated Diphenyl Ethers , Brazil , Halogenated Diphenyl Ethers/analysis , Humans , Dust/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring
2.
Environ Pollut ; 350: 124023, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663508

ABSTRACT

Considering that microplastics (MPs) are classified as ubiquitous pollutants, that air quality affects human health, and that people remain indoors most of the time, the need has arisen to evaluate the exposure to MPs within the suspended dust in indoor environments. With this objective, the present study carried out passive sampling to analyze the precipitation of microparticles in some indoor residential environments (2 apartments) and workplaces (an office, a pastry shop, a gift shop, and a paint shop) in Barranquilla, Colombia. The quantification and physical characterization of microparticles were carried out under a stereomicroscope, and the chemical characterization was carried out by infrared microspectroscopy (µFTIR). The highest average concentration of MPs in the apartments was found in the air-conditioned rooms (1.1 × 104 MP/m2/day), and concerning the workplaces, the gift shop and the paint shop were the spaces with a higher proportion of MPs (6.0-6.1 × 103 MP/m2/day), with polyesters being the main synthetic polymers, but being semi-synthetic particles the predominant among the samples. Regarding its morphology, fibers were the most abundant shape (>90%), grouping mainly in the 1000-5000 µm range, while the few fragments found were mostly grouped below 50 µm. Exposure by inhalation of MPs in adults was estimated between 1.7 × 102-1.6 × 103 MP/kg/day, while by ingestion it ranged between 2.7 × 102-2.4 × 103 MPs/kg/day. On the other hand, within our research, a significant presence of non-plastic microparticles was found, which reached up to 69% in analyzed samples, corresponding mainly to cotton and cellulose, so we suggest that these should also be included in future studies that aim to estimate potential health implications from exposure to suspended micropollutants.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Monitoring , Microplastics , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Microplastics/analysis , Colombia , Dust/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Particle Size , Humans , Particulate Matter/analysis
3.
Braz J Microbiol ; 55(2): 1601-1618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587763

ABSTRACT

Monitoring dynamics of airborne fungal species and controlling of harmful ones are of vital importance to conservation of cultural relics. However, the evaluation of air quality and the community structure characteristics of microorganisms, especially fungi, in the atmosphere of archives is in a stage of continuous exploration though more than 4,000 archives were constructed in China. Seventy-two air samples were collected in this study under different spatial and weather conditions from the archives of Kunming Medical University, located in the Kunming metropolitan area, Yunnan province, southwestern China. A total of 22 airborne fungal classes, 160 genera and 699 ASVs were identified, the species diversity is on the rise with the strengthening of air circulation with the outside space, and thus the intensive energy metabolism and activity were found in the spaces with window and sunny weather, except for the higher lipid synthesis of indoor samples than that of outdoor ones. Furthermore, there were significant differences in fungal community composition and abundance between sunny and rainy weathers. A considerable number of species have been identified as indicator in various environmental and weather conditions of the archives, and temperature and humidity were thought to have significant correlations with the abundance of these species. Meanwhile, Cladosporium and Alternaria were the dominant genera here, which may pose a threat to the health of archive professionals. Therefore, monitoring and controlling the growth of these fungal species is crucial for both conservation of paper records and health of archive professionals.


Subject(s)
Air Microbiology , Biodiversity , Fungi , China , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Air Pollution, Indoor/analysis , Archives , Environmental Monitoring , Mycobiome , Weather
4.
Sci Total Environ ; 927: 172132, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569952

ABSTRACT

This study investigated the occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in house dust samples from six regions across four continents. PFASs were detected in all indoor dust samples, with total median concentrations ranging from 17.3 to 197 ng/g. Among the thirty-one PFAS analytes, eight compounds, including emerging PFASs, exhibited high detection frequencies in house dust from all six locations. The levels of PFASs varied by region, with higher concentrations found in Adelaide (Australia), Tianjin (China), and Carbondale (United States, U.S.). Moreover, PFAS composition profiles also differed among regions. Dust from Australia and the U.S. contained high levels of 6:2 fluorotelomer phosphate ester (6:2 diPAP), while perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were predominant in other regions. Furthermore, our results indicate that socioeconomic factors impact PFAS levels. The assessment of human exposure through dust ingestion and dermal contact indicates that toddlers may experience higher exposure levels than adults. However, the hazard quotients of PFASs for both toddlers and adults were below one, indicating significant health risks are unlikely. Our study highlights the widespread occurrence of PFASs in global indoor dust and the need for continued monitoring and regulation of these chemicals.


Subject(s)
Air Pollution, Indoor , Dust , Fluorocarbons , Geographic Mapping , Internationality , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Brazil , Dust/analysis , Environmental Exposure/adverse effects , Fluorocarbons/adverse effects , Fluorocarbons/analysis , Fluorocarbons/chemistry , Fluorocarbons/classification , Housing , Risk Assessment , Vietnam , Humans
5.
Environ Res ; 241: 117609, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37949287

ABSTRACT

The research assessed waste-based briquettes consumption compared to conventional fuels in the Andes. Laboratory tests were conducted together with on-field analysis in Colquencha (Bolivia). The laboratory study shows that the performances of briquettes are better in terms of PM2.5 (933.4 ± 50.8 mg kg-1) and CO emissions (22.89 ± 2.40 g kg-1) compared to animal dung (6265.7 ± 1273.5 mgPM2.5 kg-1 and 48.10 ± 12.50 gCO kg-1), although the boiling time increased due to the lower fuel consumption rate and firepower compared to shrubs. The social survey organized with 150 Bolivian citizens suggested that low-income households are not able to pay for an alternative fuel: about 40% would pay less than 4 USD per month, while methane use for cooking is positively correlated with the income level (r = 0.244, p < 0.05). On field analysis suggested that local cookstoves are not appropriate for briquettes combustion since indoor air pollution overcomes 30 ppm of CO and 10 mgPM2.5 m-3. On balance, local small manufactures can be the main target for selling waste-based briquettes to reduce shrubs and wood consumption. However, briquettes production costs seem not yet competitive to natural easy-to-obtain fuels (i.e., animal dung). The research encourages the use of cellulosic and biomass waste-based briquettes in the Andean area for cooking, heating, or manufacturing and strongly advises policy-makers to introduce economic incentives for the recovery of secondary raw materials.


Subject(s)
Air Pollution, Indoor , Social Status , Air Pollution, Indoor/analysis , Wood/chemistry , Poverty , Family Characteristics , Cooking , Particulate Matter/analysis
6.
Chemosphere ; 348: 140705, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981014

ABSTRACT

Waste collection services are uncommon in rural areas of low-resource countries, causing waste accumulation and subsequent dumping and burning of garbage. Air pollution from household garbage burning, including plastics, has been observed in Jalapa, Guatemala in addition to household air pollution (HAP) from cooking. Adolescent girls often help with these cooking and household tasks, but little is known about their exposures. We characterized 24-h exposures to HAP and household garbage burning in adolescent girls by measuring fine particulate matter (PM2.5), black carbon (BC), urinary biomarkers of polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates. We recruited 60 girls between 13 and 17 years of age who helped with cooking activities and lived with participants of the Household Air Pollution Intervention Network (HAPIN) trial. We recruited n = 30 girls each from the control (wood-burning stove) and intervention (liquefied petroleum gas stove) arms. We also measured real-time kitchen concentrations of BC in 20 homes (33%). PM2.5 and BC were measured in n = 21 control and n = 20 intervention participants. Median concentrations of personal PM2.5 and BC and kitchen BC were lower (p < 0.05) in the intervention arm by 87%, 80%, and 85%, respectively. PAH metabolite concentrations were lower (p < 0.001) for all nine metabolites in intervention (n = 26) compared to control participants (n = 29). Urinary BPA concentrations were 66% higher in participants who reported using cosmetics (p = 0.02), and phthalate concentrations were 63% higher in participants who had reported using hair products during the sample period (p = 0.05). Our results suggest that gas stoves can reduce HAP exposures among adolescents who are not primary cooks at home. Biomarkers of plastic exposure were not associated with intervention status, but some were elevated compared to age- and sex-matched participants of the National Health and Nutrition Examination Survey (NHANES).


Subject(s)
Air Pollution, Indoor , Air Pollution , Female , Humans , Adolescent , Nutrition Surveys , Air Pollution, Indoor/analysis , Guatemala , Air Pollution/analysis , Particulate Matter/analysis , Soot , Cooking , Biomarkers , Rural Population
7.
Rev. méd. hondur ; 91(2): 94-99, jul.-dic. 2023. tab.
Article in Spanish | LILACS, BIMENA | ID: biblio-1551555

ABSTRACT

Antecedentes. Ante la evidencia que establece una transmisión aérea del SARS-CoV-2, es primordial buscar nuevas formas para reducir la transmisión. El monitoreo a través de medidores de dióxido de carbono (CO 2 ) permite determinar la calidad de aire en espacios cerrados. Objetivo: Evaluar niveles de CO 2 y uso de medidas de seguridad para reducir la transmisión de COVID-19 en aulas universitarias, Tegucigalpa, Honduras, abril-mayo 2022. Métodos: Estudio observacional descriptivo transversal sobre aulas y estudiantes universitarios. Los datos se obtuvieron por observación, medición y documentación. La muestra fue a conveniencia. Se midieron las concentraciones de CO2 en 5 aulas usando un medidor infrarrojo marca ARANET4. Se registraron las medidas de bioseguridad utilizadas. Se realizó análisis univariado por medio de frecuencia y medidas de tendencia central; se calculó coeficientes de correlación de Pearson y valores de p. Se obtuvo consentimiento informado de los participantes. Resultados: De los 86 participantes, 91.9% (79) aplicaba medidas de bioseguridad. Los niveles máximos de CO 2 encontrados en 5 aulas se encontraron en el nivel recomendado para espacios de clases (clasificación Calidad del Aire Interior IDA, Subdirección de Salud Pública, Madrid, España). Discusión: Los niveles de CO 2 en las aulas se elevaron con la presencia de estudiantes. Sin embargo, los niveles alcanzados no sugieren un riesgo. Honduras no cuenta con normas de calidad del aire para la protección a la salud de los impactos de los contaminantes atmosféricos. Es necesario realizar estudios con mayor tamaño muestral en cuanto a sitios y participantes...(AU)


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , SARS-CoV-2 , COVID-19/prevention & control , Carbon Dioxide/analysis , Air Pollution, Indoor/analysis
8.
Sci Total Environ ; 905: 167797, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37838044

ABSTRACT

Pesticides are widely used as plant protection products (PPPs) in farming systems to preserve crops against pests, weeds, and fungal diseases. Indoor dust can act as a chemical repository revealing occurrence of pesticides in the indoor environment at the time of sampling and the (recent) past. This in turn provides information on the exposure of humans to pesticides in their homes. In the present study, part of the Horizon 2020 funded SPRINT project, the presence of 198 pesticide residues was assessed in 128 indoor dust samples from both conventional and organic farmworker households across Europe, and in Argentina. Mixtures of pesticide residues were found in all dust samples (25-121, min-max; 75, median). Concentrations varied in a wide range (<0.01 ng/g-206 µg/g), with glyphosate and its degradation product AMPA, permethrin, cypermethrin and piperonyl butoxide found in highest levels. Regarding the type of pesticides, insecticides showed significantly higher levels than herbicides and fungicides. Indoor dust samples related to organic farms showed a significantly lower number of residues, total and individual concentrations than those related to conventional farms. Some pesticides found in indoor dust were no longer approved ones (29 %), with acute/chronic hazards to human health (32 %) and with environmental toxicity (21 %).


Subject(s)
Air Pollution, Indoor , Pesticide Residues , Pesticides , Humans , Pesticide Residues/analysis , Environmental Monitoring , Dust/analysis , Farmers , Argentina , Pesticides/analysis , Europe , Air Pollution, Indoor/analysis
9.
Braz J Microbiol ; 54(3): 1865-1873, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37572180

ABSTRACT

INTRODUCTION: Millions of passengers around the world are concerned with the possibility of SARS-CoV-2 contamination on public transportation. Therefore, this study aimed to investigate the presence of SARS-CoV-2 virus in indoor air and subway surfaces in Mashhad. METHODS: In this study, air and surface sampling were done at two times in the morning (7-8:30 a.m.) and evening (3:30-5 p.m.), simultaneously in two wagons for men and women in line 1 of Mashhad Metro in March 2021 to detect the virus and measure the concentration of particulate matter. Totally, 30 air and 30 metro samples were collected and examined by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: The results showed that three and two cases in the air and surface samples were infected with the SARS-CoV-2 virus, respectively. There was a significant relationship between the mean concentration of suspended particles PM1 (particulate matter smaller than 1 µm) with PM2.5 (particulate matter smaller than 2.5 µm) and PM10 (particulate matter smaller than 10 µm) (p < 0. 05). There was also a significant relationship between the mean concentration of suspended particles PM2.5 and PM10. The results showed that the mean PM2.5 measured in the indoor air of the Mashhad metro wagon had a significant relationship with WHO and US EPA and national standards, and its value was higher than the standards (p < 0.05). The average particle concentrations of PM1, PM2.5, and PM10 were equal to 40.46, 42.61, and 48.31 µg/m3. CONCLUSION: According to the results of the pollution detected in this study, COVID-19 may be transmitted by air and environmental surfaces. Our study emphasizes the need for continuous assessment of the presence of the virus in public transportation. Detection of viral RNA in subways indicates the necessity of adequate disinfection in public settings, strictness in disinfection methods, strengthening of educational activities for sanitary measures, physical spacing plan, and increasing ventilation of wagons.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Railroads , Male , Female , Humans , Air Pollutants/analysis , SARS-CoV-2 , Environmental Monitoring/methods , Air Pollution, Indoor/analysis , Iran/epidemiology , Particulate Matter/analysis
10.
Trop Doct ; 53(3): 381-385, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37093955

ABSTRACT

This study introduces a culturally sensitive educational intervention to households that use open-fire cooking methods in order to improve the acceptance and sustained use of a safer cooking stove. A wood-burning stove with a closed firebox was introduced in two villages in the highlands of Guatemala. Usage rates were measured over a seven-month period after the stoves were built. Although higher initial acceptance rates were seen in the village that received the educational intervention, households in both villages showed acceptance and sustained usage rates of the stoves. This finding supports the premise that culturally sensitive educational interventions as well as community-based programmes lead to higher acceptance of initiatives, and news of these improvements spreads through culturally accepted routes.


Subject(s)
Air Pollution, Indoor , Humans , Air Pollution, Indoor/analysis , Cooking , Guatemala , Family Characteristics
11.
Environ Health Perspect ; 131(3): 37017, 2023 03.
Article in English | MEDLINE | ID: mdl-36989076

ABSTRACT

BACKGROUND: Nationwide household transitions to the use of clean-burning cooking fuels are a promising pathway to reducing under-5 lower respiratory infection (LRI) mortality, the leading cause of child mortality globally, but such transitions are rare and evidence supporting an association between increased clean fuel use and improved health is limited. OBJECTIVES: This study aimed to investigate the association between increased primary clean cooking fuel use and under-5 LRI mortality in Ecuador between 1990 and 2019. METHODS: We documented cooking fuel use and cause-coded child mortalities at the canton (county) level in Ecuador from 1990 to 2019 (in four periods, 1988-1992, 1999-2003, 2008-2012, and 2015-2019). We characterized the association between clean fuel use and the rate of under-5 LRI mortalities at the canton level using quasi-Poisson generalized linear and generalized additive models, accounting for potential confounding variables that characterize wealth, urbanization, and child health care and vaccination rates, as well as canton and period fixed effects. We estimated averted under-5 LRI mortalities accrued over 30 y by predicting a counterfactual count of canton-period under-5 LRI mortalities were clean fuel use to not have increased and comparing with predicted canton-period under-5 LRI mortalities from our model and observed data. RESULTS: From 1990 to 2019, the proportion of households primarily using a clean cooking fuel increased from 59% to 95%, and under-5 LRI mortality fell from 28 to 7 per 100,000 under-5 population. Canton-level clean fuel use was negatively associated with under-5 LRI mortalities in linear and nonlinear models. The nonlinear association suggested a threshold at approximately 60% clean fuel use, above which there was a negative association. Increases in clean fuel use between 1990 and 2019 were associated with an estimated 7,300 averted under-5 LRI mortalities (95% confidence interval: 2,600, 12,100), accounting for nearly 20% of the declines in under-5 LRI mortality observed in Ecuador over the study period. DISCUSSION: Our findings suggest that the widespread household transition from using biomass to clean-burning fuels for cooking reduced under-5 LRI mortalities in Ecuador over the last 30 y. https://doi.org/10.1289/EHP11016.


Subject(s)
Air Pollution, Indoor , Family Characteristics , Child , Humans , Ecuador/epidemiology , Cooking , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis
12.
Public Health Nutr ; 26(8): 1686-1695, 2023 08.
Article in English | MEDLINE | ID: mdl-36793234

ABSTRACT

OBJECTIVE: Household air pollution (HAP) is a widespread environmental exposure worldwide. While several cleaner fuel interventions have been implemented to reduce personal exposures to HAP, it is unclear if cooking with cleaner fuels also affects the choice of meals and dietary intake. DESIGN: Individually randomised, open-label controlled trial of a HAP intervention. We aimed to determine the effect of a HAP intervention on dietary and Na intake. Intervention participants received a liquefied petroleum gas (LPG) stove, continuous fuel delivery and behavioural messaging during 1 year whereas control participants continued with usual cooking practices that involved the use of biomass-burning stoves. Dietary outcomes included energy, energy-adjusted macronutrients and Na intake at baseline, 6 months and 12 months post-randomisation using 24-h dietary recalls and 24-h urine. We used t-tests to estimate differences between arms in the post-randomisation period. SETTING: Rural settings in Puno, Peru. PARTICIPANTS: One hundred women aged 25-64 years. RESULTS: At baseline, control and intervention participants were similar in age (47·4 v. 49·5 years) and had similar daily energy (8894·3 kJ v. 8295·5 kJ), carbohydrate (370·8 g v. 373·3 g) and Na intake (4·9 g v. 4·8 g). One year after randomisation, we did not find differences in average energy intake (9292·4 kJ v. 8788·3 kJ; P = 0·22) or Na intake (4·5 g v. 4·6 g; P = 0·79) between control and intervention participants. CONCLUSIONS: Our HAP intervention consisting of an LPG stove, continuous fuel distribution and behavioural messaging did not affect dietary and Na intake in rural Peru.


Subject(s)
Air Pollution, Indoor , Air Pollution , Petroleum , Sodium, Dietary , Adult , Female , Humans , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Peru , Cooking , Rural Population
13.
J Pediatr (Rio J) ; 99(4): 362-370, 2023.
Article in English | MEDLINE | ID: mdl-36716790

ABSTRACT

OBJECTIVE: To investigate the indoor environmental risk factors to provide measures for the prevention and control of otitis in preschool children. METHOD: In this cross-sectional study, a questionnaire survey was administered to preschool children aged 2-7 years from 60 kindergartens in six districts of Urumqi City in August 2019. Multiple regression was run to predict influence factors for otitis media in preschool children. RESULT: A total of 8153 valid questionnaires were collected. After adjusting for age, the prevalence of otitis among preschool children in Urumqi was 13.1%. Multivariate logistic regression showed that previous antibiotic treatment, treatment with one to two antibiotics before 1 year of age, presence of walls with aqueous or latex paint, use of carpet floor bedding in rooms, newly decorated homes of mothers before pregnancy, purchase of new furniture for homes of children at 0-1 year of age, and presence of flowering plants in the residence of children at 0-1 years of age were all identified as risk factors for the development of otitis in children. CONCLUSION: Parents should also pay attention to indoor living environments, and reduce indoor renovation in the homes of children during their growth and development, which can positively improve children's indoor living environment, thus effectively preventing otitis in preschool children.


Subject(s)
Air Pollution, Indoor , Otitis , Pregnancy , Female , Humans , Child, Preschool , Infant, Newborn , Infant , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Prevalence , Cross-Sectional Studies , Risk Factors , Surveys and Questionnaires , China/epidemiology
14.
Article in English | MEDLINE | ID: mdl-36360942

ABSTRACT

Women and children in rural regions of low-income countries are exposed to high levels of household air pollution (HAP) as they traditionally tend to household chores such as cooking with biomass fuels. Early life exposure to air pollution is associated with aeroallergen sensitization and developing allergic diseases at older ages. This prospective cohort study assigned HAP-reducing chimney stoves to 557 households in rural Guatemala at different ages of the study children. The children's air pollution exposure was measured using personal CO diffusion tubes. Allergic outcomes at 4-5 years old were assessed using skin prick tests and International Study of Asthma and Allergies in Childhood (ISAAC)-based questionnaires. Children assigned to improved stoves before 6 months old had the lowest HAP exposure compared to the other groups. Longer exposure to the unimproved stoves was associated with higher risks of maternal-reported allergic asthma (OR = 2.42, 95% CI: 1.11-5.48) and rhinitis symptoms (OR = 2.01, 95% CI: 1.13-3.58). No significant association was found for sensitization to common allergens such as dust mites and cockroaches based on skin prick tests. Reducing HAP by improving biomass burning conditions might be beneficial in preventing allergic diseases among children in rural low-income populations.


Subject(s)
Air Pollution, Indoor , Asthma , Hypersensitivity , Child , Humans , Female , Child, Preschool , Infant , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Prospective Studies , Guatemala/epidemiology , Cooking , Allergens , Asthma/epidemiology , Asthma/etiology , Smoke/adverse effects
15.
Article in English | MEDLINE | ID: mdl-36231507

ABSTRACT

There is a need to ensure comfortable conditions for hospital staff and patients from the point of view of thermal comfort and air quality so that they do not affect their performance. We consider the need for hospital employees and patients to enjoy conditions of greater well-being during their stay. This is understood as a comfortable thermal sensation and adequate air quality, depending on the task they are performing. The contribution of this article is the formulation of the fundamentals of a system and platform for monitoring thermal comfort and Indoor Air Quality (IAQ) in hospitals, based on an Internet of Things platform composed of a low-cost sensor node network that is capable of measuring critical variables such as humidity, temperature, and Carbon Dioxide (CO2). As part of the platform, a multidimensional data model with an On-Line Analytical Processing (OLAP) approach is presented that offers query flexibility, data volume reduction, as well as a significant reduction in query response times. The experimental results confirm the suitability of the platform's data model, which facilitates operational and strategic decision making in complex hospitals.


Subject(s)
Air Pollution, Indoor , Internet of Things , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Environmental Monitoring/methods , Hospitals , Humans , Renewable Energy , Temperature
16.
Environ Res ; 214(Pt 2): 113869, 2022 11.
Article in English | MEDLINE | ID: mdl-35820656

ABSTRACT

Traditional cooking with solid fuels (biomass, animal dung, charcoals, coal) creates household air pollution that leads to millions of premature deaths and disability worldwide each year. Exposure to household air pollution is highest in low- and middle-income countries. Using data from a stepped-wedge randomized controlled trial of a cookstove intervention among 230 households in Honduras, we analyzed the impact of household and personal variables on repeated 24-h measurements of fine particulate matter (PM2.5) and black carbon (BC) exposure. Six measurements were collected approximately six-months apart over the course of the three-year study. Multivariable mixed models explained 37% of variation in personal PM2.5 exposure and 49% of variation in kitchen PM2.5 concentrations. Additionally, multivariable models explained 37% and 47% of variation in personal and kitchen BC concentrations, respectively. Stove type, season, presence of electricity, primary stove location, kitchen enclosure type, stove use time, and presence of kerosene for lighting were all associated with differences in geometric mean exposures. Stove type explained the most variability of the included variables. In future studies of household air pollution, tracking the cooking behaviors and daily activities of participants, including outdoor exposures, may explain exposure variation beyond the household and personal variables considered here.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Animals , Carbon , Cooking , Environmental Monitoring , Honduras , Humans , Particulate Matter/analysis , Rural Population , Soot
17.
Appl Radiat Isot ; 187: 110319, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35752113

ABSTRACT

Radon and progeny are potentially relevant in radioecological studies, as they contribute more than half of the exposure to environmental radiation. The investigation of 222Rn in internal environments of municipalities of Paraíba and Rio Grande do Norte in Brazil was carried out using passive dosimetry with α Espec-222, installed in environments selected by the history of natural radiative occurrences. The monitoring time was eight months to consider seasonal influence. Concentrations from 26.91 to 316.35 Bq m-3 were obtained, with a maximum effective dose of almost 8 mSv y-1. The influence on households exceeds, by almost 31%, the average obtained for occupational environments. The municipalities of Paraíba presented higher results for Rn, with an average of almost 176 Bq m-3 and an effective dose greater than 4 mSv y-1. The application of individual occupancy factors for home and work environments made it possible to combine the dosimetric models, making the scenario closer to the real exposure of individuals who work and reside in the same municipality, with a dosimetric response of 21.45% lower than the model used worldwide. The different scenarios applied allowed expanding the radiometry of the environments, generating a database that precedes studies of environmental and radioecological impacts, strengthening security and enabling new works to interpret public health problems in search of joint and shared solutions.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Background Radiation , Brazil , Humans , Radiation Monitoring/methods , Radon/analysis
18.
Environ Health Perspect ; 130(5): 57007, 2022 05.
Article in English | MEDLINE | ID: mdl-35549716

ABSTRACT

BACKGROUND: Household air pollution (HAP) from biomass fuel combustion remains a leading environmental risk factor for morbidity worldwide. OBJECTIVE: Measure the effect of liquefied petroleum gas (LPG) interventions on HAP exposures in Puno, Peru. METHODS: We conducted a 1-y randomized controlled trial followed by a 1-y pragmatic crossover trial in 180 women age 25-64 y. During the first year, intervention participants received a free LPG stove, continuous fuel delivery, and regular behavioral messaging, whereas controls continued their biomass cooking practices. During the second year, control participants received a free LPG stove, regular behavioral messaging, and vouchers to obtain LPG tanks from a nearby distributor, whereas fuel distribution stopped for intervention participants. We collected 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM) with aerodynamic diameter ≤2.5µm (PM2.5), black carbon (BC), and carbon monoxide (CO) at baseline and 3-, 6-, 12-, 18-, and 24-months post randomization. RESULTS: Baseline mean [±standard deviation (SD)] PM2.5 (kitchen area concentrations 1,220±1,010 vs. 1,190±880 µg/m3; personal exposure 126±214 vs. 104±100 µg/m3), CO (kitchen 53±49 vs. 50±41 ppm; personal 7±8 vs. 7±8 ppm), and BC (kitchen 180±120 vs. 210±150 µg/m3; personal 19±16 vs. 21±22 µg/m3) were similar between control and intervention participants. Intervention participants had consistently lower mean (±SD) concentrations at the 12-month visit for kitchen (41±59 µg/m3, 3±6 µg/m3, and 8±13 ppm) and personal exposures (26±34 µg/m3, 2±3 µg/m3, and 3±4 ppm) to PM2.5, BC, and CO when compared to controls during the first year. In the second year, we observed comparable HAP reductions among controls after the voucher-based intervention for LPG fuel was implemented (24-month visit PM2.5, BC, and CO kitchen mean concentrations of 34±74 µg/m3, 3±5 µg/m3, and 6±6 ppm and personal exposures of 17±15 µg/m3, 2±2 µg/m3, and 3±4 ppm, respectively), and average reductions were present among intervention participants even after free fuel distribution stopped (24-month visit PM2.5, BC, and CO kitchen mean concentrations of 561±1,251 µg/m3, 82±124 µg/m3, and 23±28 ppm and personal exposures of 35±38 µg/m3, 6±6 µg/m3, and 4±5 ppm, respectively). DISCUSSION: Both home delivery and voucher-based provision of free LPG over a 1-y period, in combination with provision of a free LPG stove and longitudinal behavioral messaging, reduced HAP to levels below 24-h World Health Organization air quality guidelines. Moreover, the effects of the intervention on HAP persisted for a year after fuel delivery stopped. Such strategies could be applied in LPG programs to reduce HAP and potentially improve health. https://doi.org/10.1289/EHP10054.


Subject(s)
Air Pollution, Indoor , Air Pollution , Petroleum , Adult , Air Pollution, Indoor/analysis , Cooking , Cross-Over Studies , Female , Humans , Middle Aged , Particulate Matter/analysis , Peru , Rural Population , Soot
19.
Environ Int ; 162: 107155, 2022 04.
Article in English | MEDLINE | ID: mdl-35278800

ABSTRACT

Poor ventilation and polluting cooking fuels in low-income homes cause high exposure, yet relevant global studies are limited. We assessed exposure to in-kitchen particulate matter (PM2.5 and PM10) employing similar instrumentation in 60 low-income homes across 12 cities: Dhaka (Bangladesh); Chennai (India); Nanjing (China); Medellín (Colombia); São Paulo (Brazil); Cairo (Egypt); Sulaymaniyah (Iraq); Addis Ababa (Ethiopia); Akure (Nigeria); Blantyre (Malawi); Dar-es-Salaam (Tanzania) and Nairobi (Kenya). Exposure profiles of kitchen occupants showed that fuel, kitchen volume, cooking type and ventilation were the most prominent factors affecting in-kitchen exposure. Different cuisines resulted in varying cooking durations and disproportional exposures. Occupants in Dhaka, Nanjing, Dar-es-Salaam and Nairobi spent > 40% of their cooking time frying (the highest particle emitting cooking activity) compared with âˆ¼ 68% of time spent boiling/stewing in Cairo, Sulaymaniyah and Akure. The highest average PM2.5 (PM10) concentrations were in Dhaka 185 ± 48 (220 ± 58) µg m-3 owing to small kitchen volume, extensive frying and prolonged cooking compared with the lowest in Medellín 10 ± 3 (14 ± 2) µg m-3. Dual ventilation (mechanical and natural) in Chennai, Cairo and Sulaymaniyah reduced average in-kitchen PM2.5 and PM10 by 2.3- and 1.8-times compared with natural ventilation (open doors) in Addis Ababa, Dar-es-Salam and Nairobi. Using charcoal during cooking (Addis Ababa, Blantyre and Nairobi) increased PM2.5 levels by 1.3- and 3.1-times compared with using natural gas (Nanjing, Medellin and Cairo) and LPG (Chennai, Sao Paulo and Sulaymaniyah), respectively. Smaller-volume kitchens (<15 m3; Dhaka and Nanjing) increased cooking exposure compared with their larger-volume counterparts (Medellin, Cairo and Sulaymaniyah). Potential exposure doses were highest for Asian, followed by African, Middle-eastern and South American homes. We recommend increased cooking exhaust extraction, cleaner fuels, awareness on improved cooking practices and minimising passive occupancy in kitchens to mitigate harmful cooking emissions.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Aerosols , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Bangladesh , Brazil , Cities , Cooking , Environmental Monitoring/methods , Ethiopia , India , Kenya , Particulate Matter/analysis
20.
Article in English | MEDLINE | ID: mdl-35270649

ABSTRACT

Due to the current COVID-19 pandemic, guaranteeing thermal comfort and low CO2 levels in classrooms through efficient ventilation has become vitally important. This study presents three-dimensional simulations based on computational fluid dynamics of airflow inside an air-conditioned classroom located in Veracruz, Mexico. The analysis included various positions of an air extractor, Reynolds numbers up to 3.5 × 104, four different concentrations of pollutant sources, and three different times of the day. The simulations produced velocity, air temperature, and CO2 concentrations fields, and we calculated average air temperatures, average CO2 concentrations, and overall ventilation effectiveness. Our results revealed an optimal extractor position and Reynolds number conducive to thermal comfort and low CO2 levels due to an adequate ventilation configuration. At high pollutant concentrations, it is necessary to reduce the number of students in the classroom to achieve safe CO2 levels.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , Carbon Dioxide/analysis , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL