Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000105

ABSTRACT

This study aims to evaluate and compare cellular therapy with human Wharton's jelly (WJ) mesenchymal stem cells (MSCs) and neural precursors (NPs) in experimental autoimmune encephalomyelitis (EAE), a preclinical model of Multiple Sclerosis. MSCs were isolated from WJ by an explant technique, differentiated to NPs, and characterized by cytometry and immunocytochemistry analysis after ethical approval. Forty-eight rats were EAE-induced by myelin basic protein and Freund's complete adjuvant. Forty-eight hours later, the animals received intraperitoneal injections of 250 ng/dose of Bordetella pertussis toxin. Fourteen days later, the animals were divided into the following groups: a. non-induced, induced: b. Sham, c. WJ-MSCs, d. NPs, and e. WJ-MSCs plus NPs. 1 × 105. Moreover, the cells were placed in a 10 µL solution and injected via a stereotaxic intracerebral ventricular injection. After ten days, the histopathological analysis for H&E, Luxol, interleukins, and CD4/CD8 was carried out. Statistical analyses demonstrated a higher frequency of clinical manifestation in the Sham group (15.66%) than in the other groups; less demyelination was seen in the treated groups than the Sham group (WJ-MSCs, p = 0.016; NPs, p = 0.010; WJ-MSCs + NPs, p = 0.000), and a lower cellular death rate was seen in the treated groups compared with the Sham group. A CD4/CD8 ratio of <1 showed no association with microglial activation (p = 0.366), astrocytes (p = 0.247), and cell death (p = 0.577) in WJ-MSCs. WJ-MSCs and NPs were immunomodulatory and neuroprotective in cellular therapy, which would be translated as an adjunct in demyelinating diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Multiple Sclerosis , Animals , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Rats , Multiple Sclerosis/therapy , Multiple Sclerosis/pathology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Female , Cell- and Tissue-Based Therapy/methods , Neural Stem Cells , Disease Models, Animal , Wharton Jelly/cytology
2.
Cell Tissue Bank ; 25(3): 831-838, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38904737

ABSTRACT

The aim of this study was to evaluate the effect of adipose-derived stem cells (ADSCs) in the treatment of acute rupture of the Achilles tendon. It was a cross-sectional study involving 15 patients. Patients were randomly divided: group 1-rupture; group 2-suture; group 3-rupture + ADSCs. In the AOFAS score, the score was higher in group 3 with a significant difference. In the ATRS score, the score was higher in groups 2 and 3, also with a significant difference. As for the ultrasound score, there was a significant difference between the experimental groups in relation to this score, however, in the multiple comparisons test, comparing two groups at a time, it was possible to observe a significant difference of the experimental groups. It can be concluded that cell therapy in this condition may be a treatment option due to tissue regeneration and significant recovery of function.


Subject(s)
Achilles Tendon , Adipose Tissue , Humans , Achilles Tendon/injuries , Male , Female , Rupture/therapy , Adult , Adipose Tissue/cytology , Cross-Sectional Studies , Stem Cell Transplantation , Middle Aged , Stem Cells/cytology , Tendon Injuries/therapy , Cell- and Tissue-Based Therapy/methods , Treatment Outcome
3.
Cytotherapy ; 26(8): 939-947, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38639672

ABSTRACT

BACKGROUND AIMS: The marketing authorization of Advanced Therapy Medicinal Products (ATMPs) in Brazil is recent. The features of these therapies impose specialized regulatory action and are consequently challenging for developers. The goal of this study was to identify the industry's experience in clinical development, marketing authorization and access to ATMPs through the Unified Health System (SUS, acronym in Portuguese), from a regulatory perspective. METHODS: A survey containing structured questions was conducted among research participants who work at companies that commercialize ATMPs. A descriptive analysis was performed. RESULTS: We invited 15 foreign pharmaceutical companies, of which 10 agreed to participate. Overall, participants assessed that Brazil has a well-established regulatory system, especially the sanitary registration by the National Health Surveillance Agency (Anvisa), which ensures the quality, safety, and efficacy of the products. The Agency's good interaction with the regulated sector, the harmonization of sanitary and ethical assessment systems with other countries, and the analysis time in the biosafety assessment of Genetically Modified Organisms (GMOs) stand out as positive in industry's evaluation. On the other hand, it is important to advance the pricing regulation for these products since Brazilian regulations do not establish specific criteria for ATMP. One of the biggest challenges is the difficulty for the SUS in reimbursing these very high-cost therapies, especially using current Health Technology Assessment (HTA) methods. CONCLUSIONS: Considering the increasing number of approvals of cell and gene therapies in Brazil in the coming years, a close dialogue between the industry and the public sector is recommended to advance regulatory improvements (pricing and HTA). Additionally, the construction of policies to promote the national Health Economic-Industrial Complex, based on a mission-oriented vision that encourages innovative models of financing, especially those that consider risk-sharing and co-financing technologies, will help provide the population with universal, equitable and sustainable access to ATMP in the SUS.


Subject(s)
Health Services Accessibility , Brazil , Humans , Surveys and Questionnaires , Cell- and Tissue-Based Therapy/economics , Cell- and Tissue-Based Therapy/methods , Drug Industry/economics , Genetic Therapy/economics
4.
EBioMedicine ; 103: 105125, 2024 May.
Article in English | MEDLINE | ID: mdl-38640834

ABSTRACT

We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.


Subject(s)
Genetic Therapy , Humans , Genetic Therapy/methods , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Heart Diseases/therapy , Heart Diseases/genetics , Cell- and Tissue-Based Therapy/methods , Gene Editing , Cardiology/methods , Stem Cell Transplantation/methods
5.
Cancer Control ; 28: 10732748211038735, 2021.
Article in English | MEDLINE | ID: mdl-34565215

ABSTRACT

Since the second half of the 20th century, our knowledge about the biology of cancer has made extraordinary progress. Today, we understand cancer at the genomic and epigenomic levels, and we have identified the cell that starts neoplastic transformation and characterized the mechanisms for the invasion of other tissues. This knowledge has allowed novel drugs to be designed that act on specific molecular targets, the immune system to be trained and manipulated to increase its efficiency, and ever more effective therapeutic strategies to be developed. Nevertheless, we are still far from winning the war against cancer, and thus biomedical research in oncology must continue to be a global priority. Likewise, there is a need to reduce unequal access to medical services and improve prevention programs, especially in countries with a low human development index.


Subject(s)
Biomedical Research/organization & administration , Medical Oncology/organization & administration , Neoplasms/physiopathology , Neoplasms/therapy , Antineoplastic Agents, Immunological/therapeutic use , Cell- and Tissue-Based Therapy/methods , Epigenesis, Genetic , Genomics , Health Services Accessibility , Humans , Neoplasm Invasiveness/physiopathology , Neoplasms/epidemiology , Neoplasms/genetics , Neoplastic Stem Cells/physiology
6.
Cell Transplant ; 30: 9636897211034464, 2021.
Article in English | MEDLINE | ID: mdl-34427495

ABSTRACT

The route used in the transplantation of mesenchymal stem cells (MSCs) can directly affect the treatment success. The transplantation of MSCs via the intrathecal (IT) route can be an important therapeutic strategy for neurological disorders. The objective of this study was to evaluate the safety and feasibility of the IT transplantation of autologous (Auto-MSCs) and allogeneic (Allo-MSCs) bone marrow mesenchymal stem cells (BM-MSCs) in healthy dogs. Based on neurodisability score, cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI), no significant differences from the control group were observed on day 1 or day 5 after IT Auto- or Allo-MSCs transplantation (P > 0.05). In addition, analysis of matrix metalloproteinase (MMP)-2 and MMP-9 expression in the CSF revealed no significant differences (P > 0.05) at 5 days after IT transplantation in the Auto- or Allo-MSCs group when compared to the control. Intrathecal transplantation of BM-MSCs in dogs provides a safe, easy and minimally invasive route for the use of cell-based therapeutics in central nervous system diseases.


Subject(s)
Bone Marrow/metabolism , Cell- and Tissue-Based Therapy/methods , Injections, Spinal/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Transplantation, Autologous/methods , Transplantation, Homologous/methods , Animals , Dogs
7.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071399

ABSTRACT

Extracellular vesicles (EVs) have been described as important mediators of cell communication, regulating several physiological processes, including tissue recovery and regeneration. In the kidneys, EVs derived from stem cells have been shown to support tissue recovery in diverse disease models and have been considered an interesting alternative to cell therapy. For this purpose, however, several challenges remain to be overcome, such as the requirement of a high number of EVs for human therapy and the need for optimization of techniques for their isolation and characterization. Moreover, the kidney's complexity and the pathological process to be treated require that EVs present a heterogeneous group of molecules to be delivered. In this review, we discuss the recent advances in the use of EVs as a therapeutic tool for kidney diseases. Moreover, we give an overview of the new technologies applied to improve EVs' efficacy, such as novel methods of EV production and isolation by means of bioreactors and microfluidics, bioengineering the EV content and the use of alternative cell sources, including kidney organoids, to support their transfer to clinical applications.


Subject(s)
Acute Kidney Injury/therapy , Cell- and Tissue-Based Therapy/methods , Exosomes/metabolism , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Renal Insufficiency, Chronic/therapy , Bioengineering/methods , Cell Culture Techniques/methods , Exosomes/transplantation , Extracellular Vesicles/transplantation , Humans , Mesenchymal Stem Cells/cytology , Particle Size
8.
Cells ; 10(2)2021 02 17.
Article in English | MEDLINE | ID: mdl-33671407

ABSTRACT

Biological scaffolds have become an attractive approach for repairing the infarcted myocardium and have been shown to facilitate constructive remodeling in injured tissues. This study aimed to investigate the possible utilization of bacterial cellulose (BC) membrane patches containing cocultured cells to limit myocardial postinfarction pathology. Myocardial infarction (MI) was induced by ligating the left anterior descending coronary artery in 45 Wistar rats, and patches with or without cells were attached to the hearts. After one week, the animals underwent echocardiography to assess for ejection fraction and left ventricular end-diastolic and end-systolic volumes. Following patch formation, the cocultured cells retained viability of >90% over 14 days in culture. The patch was applied to the myocardial surface of the infarcted area after staying 14 days in culture. Interestingly, the BC membrane without cellular treatment showed higher preservation of cardiac dimensions; however, we did not observe improvement in the left ventricular ejection fraction of this group compared to coculture-treated membranes. Our results demonstrated an important role for BC in supporting cells known to produce cardioprotective soluble factors and may thus provide effective future therapeutic outcomes for patients suffering from ischemic heart disease.


Subject(s)
Cell- and Tissue-Based Therapy , Cellulose/metabolism , Myocardial Infarction/therapy , Ventricular Function, Left/physiology , Animals , Cell- and Tissue-Based Therapy/methods , Heart/physiopathology , Myocardium/metabolism , Neovascularization, Physiologic , Rats, Wistar , Stroke Volume/physiology , Ventricular Remodeling/physiology
9.
Stem Cells Dev ; 30(3): 119-127, 2021 02.
Article in English | MEDLINE | ID: mdl-33307968

ABSTRACT

The global COVID-19 pandemic has prompted urgent need for potential therapies for severe respiratory consequences resulting from coronavirus infection. New therapeutic agents that will attenuate ongoing inflammation and at the same time promote regeneration of injured lung epithelial cells are urgently needed. Cell-based therapies, primarily involving mesenchymal stromal cells (MSCs) and their derivatives, are currently investigated worldwide for SARS-CoV-2-induced lung diseases. A significant number of academic centers and companies globally have already initiated such trials. However, at a time of unprecedented need, it is also foreseen that families and caregivers will seek all available options, including access to cell-based and other investigational products, even before proven safety and efficacy as well as regulatory approval. This should not be an excuse for opportunists to sell or advertise unproven therapies of any kind. "Compassionate use" should be conducted in the context of a clinical investigation framed by strict ethical and regulatory permissions, with the goal of obtaining mechanistic information wherever possible.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Pandemics/prevention & control , COVID-19/virology , Cell- and Tissue-Based Therapy/methods , Humans , Lung/virology , Mesenchymal Stem Cells/cytology , SARS-CoV-2/pathogenicity
10.
J Burn Care Res ; 42(3): 577-585, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33022032

ABSTRACT

Since autologous split-thickness skin grafts are scarce and lab skin growth requires a significant amount of time, there are limited available treatment approaches for patients with full-thickness burns greater than 90% TBSA. Additionally, to achieve the primary goal of skin coverage and resuscitation, there must exist a balance between fluid loss and metabolic derangement. Allografts and xenografts have traditionally been used early in the process to achieve these goals. Currently, novel approaches to treatment consider the additional use of synthetic dermal substitutes and autologous skin cell suspension to improve outcomes. This case series describes the treatment course of patients with greater than 90% TBSA full-thickness burn injuries using a staged, multifaceted approach of using NovoSorb Biodegradable Temporizing Matrix™ as the primary dermal substitute in conjunction with a RECELL™ Autologous Cell Suspensions Device applied with autograft and allograft to achieve improved resuscitation, limiting fluid loss, and finally skin coverage. Allograft and NovoSorb Biodegradable Temporizing Matrix™ were used early to cover excised burns, resulting in improved metabolic control by limiting the systemic inflammatory response syndrome and fluid loss. Both patients survived using this approach.


Subject(s)
Burns/therapy , Cell- and Tissue-Based Therapy/methods , Polyesters/therapeutic use , Polyethylenes/therapeutic use , Polyurethanes/therapeutic use , Skin Transplantation , Accidents, Traffic , Adolescent , Debridement , Humans , Male , Transplantation, Autologous , Wound Infection/microbiology , Wound Infection/therapy , Young Adult
11.
Brasília; CONITEC; 2021.
Non-conventional in Portuguese | BRISA/RedTESA | ID: biblio-1444115

ABSTRACT

INTRODUÇÃO: Desde o sequenciamento completo do genoma humano, há mais de vinte anos, diversas descobertas e avanços têm sido realizados nas áreas de biologia e medicina para o tratamento das doenças. Nesse sentido, as técnicas de manipulação e edição genética contribuíram para o desenvolvimento de uma nova classe de produtos que representa uma estratégia inovadora. A expectativa de curar ou moderar as consequências de doenças genéticas, principalmente nos casos de doenças raras, autoimunes e câncer, é uma esperança, uma vez que a identificação dos genes responsáveis permite que o tratamento seja alvo direcionado. Assim, o potencial das terapias avançadas adiciona uma oportunidade de melhoria importante no status de saúde e qualidade de vida dos pacientes e seus cuidadores. ESTRATÉGIA DE BUSCA: Os medicamentos classificados como terapia avançada ou de edição gênica novos ou emergentes foram localizados na base Cortellis, com o termo "Advanced Therapy Medicinal Products". Além disso, foram pesquisadas as bases MEDLINE® (via Pubmed) e Google Acadêmico, para iden


Subject(s)
Humans , Autoimmune Diseases/therapy , RNA/therapeutic use , Genetic Therapy/methods , Oligonucleotides, Antisense/therapeutic use , Tissue Engineering/methods , Rare Diseases/therapy , Cell- and Tissue-Based Therapy/methods , Neoplasms/therapy , Brazil , Efficacy , Cost-Benefit Analysis/economics , Technological Development and Innovation Projects
12.
Int. j. morphol ; 38(5): 1496-1507, oct. 2020. tab, graf
Article in Spanish | LILACS | ID: biblio-1134467

ABSTRACT

RESUMEN: En la enfermedad hepática crónica el trasplante ortotópico es la única alternativa terapéutica actual pero es limitada por falta de donantes. Ensayos con células madre adultas en daño hepático agudo evidencian promisorios resultados. El objetivo de este trabajo fue evaluar en ratas con daño hepático crónico la efectividad de la infusión de células madre adiposas humanas (CMAd-h). Ratas con fibrosis hepática inducida por tioacetamida fueron agrupadas en: grupo I control que no recibió tioacetamida ni células madre, grupo II recibió tioacetamida y suero fisiológico i.v., grupo III recibió tioacetamida y células madre adiposas 1 x 106/kg i.v. vía vena de la cola. La regeneración hepática histológica se evaluó por el index METAVIR, mientras las Macrophagocytus stellatus, células estrelladas a- SMA+ y células colágeno I+ por inmunohistoquímica; el daño funcional se evaluó por los niveles sanguíneos de los analitos Aspartato Aminotransferasa (AST), Alanina Aminotransferasa (ALT), Fosfatasa Alcalina (ALP), úrea y nitrógeno ureico (BUN) y hemograma. Los resultados muestran atenuación del daño estructural hepático evidenciado por disminución de los nódulos, del grado de lesión histológica en el score Metavir, y disminución de Macrophagocytus stellatus, células a-SMA+ y células colágeno tipo I+; funcionalmente hay reducción moderada de AST, ALT, urea, BUN y disminución moderada de células blancas pero efecto favorable sobre el volumen corpuscular media y la hemoglobina corpuscular media. Ocho semanas después de la infusión hay escasa población de CMAd-h en el hígado. En conclusión la infusión intravenosa de CMAd-h en ratas disminuye el daño funcional y estructural de la fibrosis hepática con escasa persistencia de CMAd-h en el parénquima hepático. A nuestro conocimiento este es el primer trabajo que evalúa el efecto de las CMAd-h en el modelo daño hepático crónico murino y la persistencia de las células trasplantadas.


SUMMARY: In chronic liver disease, orthotopic transplantation is the only current therapeutic alternative but it is limited due to lack of donors. Trials with adult stem cells in acute liver damage show promising results. The aim of this work was to evaluate the effectiveness of human adipose stem cell (h-ASC) infusion in rats with chronic liver damage. Rats with thioacetamide- induced liver fibrosis were grouped into: group I control that did not receive thioacetamide and h-ASC, group II received thioacetamide and saline i.v., group III received thioacetamide and h-ASC 1 x 106/ kg i.v. via tail vein. Histological liver regeneration was evaluated by METAVIR index, while Macrophagocytus stellatus (Kupffer cells), stellate cells a-SMA+ and collagen I+ cells by immunohistochemistry; functional damage was evaluated by blood levels of the analytes Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), Alkaline Phosphatase (ALP), Urea and Blood Urea Nitrogen (BUN) and hemogram. The results show attenuation of structural liver damage evidenced by decreased nodules, degree of histologic injury on Metavir score, and decreased Macrophagocytus stellatus, a-SMA+ cells and type I+ collagen cells; functionally there is moderate reduction of AST, ALT, urea, BUN and moderate decrease of white cells but favorable effect on mean corpuscular volume and mean corpuscular hemoglobin. Eight weeks after infusion there is a small population of h-ASC in the liver. In conclusion, intravenous infusion of h-ASC in rats reduces functional and structural damage of hepatic fibrosis with low persistence of h- ASC in the liver parenchyma. To our knowledge this is the first work that evaluates the effect of h-SC in the model of chronic murine liver damage and the persistence of transplanted cells.


Subject(s)
Animals , Female , Rats , Mesenchymal Stem Cell Transplantation/methods , Liver Cirrhosis, Experimental/therapy , Aspartate Aminotransferases/analysis , Immunohistochemistry , Treatment Outcome , Alanine Transaminase/analysis , Disease Models, Animal , Alkaline Phosphatase/analysis , Cell- and Tissue-Based Therapy/methods , Liver Cirrhosis, Experimental/pathology
13.
Biochem Biophys Res Commun ; 533(3): 376-382, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32962862

ABSTRACT

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) resemble fetal cardiomyocytes and electrical stimulation (ES) has been explored to mature the differentiated cells. Here, we hypothesize that ES applied at the beginning of the differentiation process, triggers both differentiation of the hiPSC-CMs into a specialized conduction system (CS) phenotype and cell maturation. We applied ES for 15 days starting on day 0 of the differentiation process and found an increased expression of transcription factors and proteins associated with the development and function of CS including Irx3, Nkx2.5 and contactin 2, Hcn4 and Scn5a, respectively. We also found activation of intercalated disc proteins (Nrap and ß-catenin). We detected ES-induced CM maturation as indicated by increased Tnni1 and Tnni3 expression. Confocal micrographs showed a shift towards expression of the gap junction protein connexin 40 in ES hiPSC-CM compared to the more dominant expression of connexin 43 in controls. Finally, analysis of functional parameters revealed that ES hiPSC-CMs exhibited faster action potential (AP) depolarization, longer intracellular Ca2+ transients, and slower AP duration at 90% of repolarization, resembling fast conducting fibers. Altogether, we provided evidence that ES during the differentiation of hiPSC to cardiomyocytes lead to development of cardiac conduction-like cells with more mature cytoarchitecture. Thus, hiPSC-CMs exposed to ES during differentiation can be instrumental to develop CS cells for cardiac disease modelling, screening individual drugs on a precison medicine type platform and support the development of novel therapeutics for arrhythmias.


Subject(s)
Action Potentials/physiology , Calcium/metabolism , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Biomarkers/metabolism , Cell Differentiation , Cell- and Tissue-Based Therapy/methods , Connexins/genetics , Connexins/metabolism , Contactin 2/genetics , Contactin 2/metabolism , Electric Stimulation , Gene Expression , Heart Conduction System/cytology , Heart Conduction System/physiology , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Induced Pluripotent Stem Cells/cytology , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myocytes, Cardiac/cytology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Primary Cell Culture , Transcription Factors/genetics , Transcription Factors/metabolism , Troponin I/genetics , Troponin I/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Gap Junction alpha-5 Protein
14.
Cytotherapy ; 22(11): 602-605, 2020 11.
Article in English | MEDLINE | ID: mdl-32933835

ABSTRACT

The serious consequences of the global coronavirus disease 2019 (COVID-19) pandemic have prompted a rapid global response to develop effective therapies that can lessen disease severity in infected patients. Cell-based approaches, primarily using mesenchymal stromal cells (MSCs), have demonstrated a strong safety profile and possible efficacy in patients with acute respiratory distress syndrome (ARDS), but whether these therapies are effective for treating respiratory virus-induced ARDS is unknown. According to the World Health Organization International Clinical Trials Registry Platform and the National Institutes of Health ClinicalTrials.gov databases, 27 clinical investigations of MSC-based cell therapy approaches have begun in China since the onset of the COVID-19 outbreak, with a growing number of academic and industry trials elsewhere as well. Several recent published reports have suggested potential efficacy; however, the available data presented are either anecdotal or from incomplete, poorly controlled investigations. Therefore, although there may be a potential role for MSCs and other cell-based therapies in treatment of COVID-19, these need to be investigated in a rationally designed, controlled approach if safety and efficacy are to be demonstrated accurately. The authors urge that the field proceed by finding a balance between swift experimentation and communication of results and scientifically coherent generation and analysis of clinical data.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Coronavirus Infections/therapy , Mesenchymal Stem Cell Transplantation/methods , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Betacoronavirus , COVID-19 , China , Humans , Mesenchymal Stem Cells/cytology , Pandemics , SARS-CoV-2
15.
PLoS Negl Trop Dis ; 14(8): e0008635, 2020 08.
Article in English | MEDLINE | ID: mdl-32853206

ABSTRACT

BACKGROUND: In view of the potential immunosuppressive and regenerative properties of mesenchymal stem cells (MSC), we investigated whether transplantation of adipose tissue-derived stem cells (ASC) could be used to control the granulomatous reaction in the liver of mice infected with Schistosoma mansoni after Praziquantel (PZQ) treatment. METHODOLOGY/PRINICPAL FINDINGS: C57BL/6 mice infected with S. mansoni were treated with PZQ and transplanted intravenously with ASC from uninfected mice. Liver morpho-physiological and immunological analyses were performed. The combined PZQ/ASC therapy significantly reduced the volume of hepatic granulomas, as well as liver damage as measured by ALT levels. We also observed that ASC accelerated the progression of the granulomatous inflammation to the advanced/curative phase. The faster healing interfered with the expression of CD28 and CTLA-4 molecules in CD4+ T lymphocytes, and the levels of IL-10 and IL-17 cytokines, mainly in the livers of PZQ/ASC-treated mice. CONCLUSIONS: Our results show that ASC therapy after PZQ treatment results in smaller granulomas with little tissue damage, suggesting the potential of ASC for the development of novel therapeutic approaches to minimize hepatic lesions as well as a granulomatous reaction following S. mansoni infection. Further studies using the chronic model of schistosomiasis are required to corroborate the therapeutic use of ASC for schistosomiasis.


Subject(s)
Adipose Tissue/physiology , Cell- and Tissue-Based Therapy/methods , Liver Diseases/therapy , Liver/parasitology , Praziquantel/therapeutic use , Schistosomiasis/drug therapy , Animals , Cytokines/metabolism , Disease Models, Animal , Granuloma , Liver/metabolism , Liver/pathology , Liver Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Schistosoma mansoni , Schistosomiasis/pathology , Schistosomiasis mansoni
16.
Regen Med ; 15(7): 1919-1933, 2020 07.
Article in English | MEDLINE | ID: mdl-32795164

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal disease that leads to progressive degeneration of motoneurons. Mutations in the C9ORF72, SOD1, TARDBP and FUS genes, among others, have been associated with ALS. Although motoneuron degeneration is the common outcome of ALS, different pathological mechanisms seem to be involved in this process, depending on the genotypic background of the patient. The advent of induced pluripotent stem cell (iPSC) technology enabled the development of patient-specific cell lines, from which it is possible to generate different cell types and search for phenotypic alterations. In this review, we summarize the pathophysiological markers detected in cells differentiated from iPSCs of ALS patients. In a translational perspective, iPSCs from ALS patients could be useful for drug screening, through stratifying patients according to their genetic background.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Biological Variation, Population , Cell- and Tissue-Based Therapy/methods , DNA-Binding Proteins/genetics , Induced Pluripotent Stem Cells/cytology , Mutation , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Humans , In Vitro Techniques , Models, Biological
17.
Brain Res ; 1747: 147026, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32750328

ABSTRACT

Despite the regenerative potential of the Peripheral Nervous System (PNS), injuries with loss of a nerve segment make the functional recovery a challenge. This work aimed to investigate the effects of the association of biodegradable conduits of poly (lactic acid) (PLA) with human adipose-derived stem cells (hADSCs) on the regeneration of the sciatic nerve. C57BL / 6 male mice were submitted to sciatic nerve transection followed by tubulization with PLA conduit. Animals were allocated in two groups: the first received an injection of DMEM inside the conduit (DMEM) and the second received hADSCs inside it (hADSC). Sensory and motor functions were assessed by the pinprick test and electroneuromiography, respectively. To assess neuronal survival the retrograde tracer fluorogold was injected into the sciatic nerve distally to the lesion site. One week after that, animals were sacrificed, tissues harvested and processed for morphological evaluation. After eight weeks, all animals showed sensory recovery in the pinprick test and there was no significant difference between the two groups. The amplitude of the compound muscle action potential was higher in the hADSCs group. The number of myelinated nerve fibers, muscle cells and motor plates was higher in the hADSC group. There was also greater survival of sensory and motor neurons in the hADSC animals. These results suggest that the association of PLA conduit and cell therapy with hADSCs leads to a better functional and morphological recovery after sciatic nerve transection.


Subject(s)
Adipose Tissue/cytology , Cell- and Tissue-Based Therapy/methods , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Sciatic Nerve/injuries , Stem Cells/cytology , Animals , Cell Survival/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Peripheral Nerve Injuries/physiopathology , Polyesters , Recovery of Function/physiology , Sciatic Nerve/physiology
18.
Cells ; 9(7)2020 07 07.
Article in English | MEDLINE | ID: mdl-32645832

ABSTRACT

Chagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation. CM-mESC were labeled with superparamagnetic iron oxide particles. To induce CCC, mice were infected with Brazil strain trypomastigotes. At 150 days post-infection (dpi), infected animals were treated with CM-mESC or PBS. Cells were detected by magnetic resonance imaging (MRI) and bioluminescence. Cardiac function was evaluated by MRI and electrocardiogram at 150 and 196 dpi. CCC mice showed significant differences in MRI and ECG parameters compared to non-infected mice. However, no differences were observed in contractile and electrical parameters between cell and PBS injected groups, 45 days after cell transplantation. Cells were detected 24 h after transplantation by MRI. CM-mESC bioluminescence tracking demonstrated over 90% decrease in signal 8 days after treatment. Nevertheless, the Infected + CM-mESC group showed a significant reduction in the percentage of collagen fibers when compared to the Infected + PBS group. In conclusion, CM-mESC therapy was not effective in reversing cardiac functional changes induced by Chagas disease despite some improvement in myocardial fibrosis.


Subject(s)
Cardiomyopathies/metabolism , Cardiomyopathies/therapy , Cell- and Tissue-Based Therapy/methods , Myocytes, Cardiac/physiology , Animals , Cardiomyopathies/diagnostic imaging , Chagas Disease/diagnostic imaging , Chagas Disease/metabolism , Chagas Disease/therapy , Disease Models, Animal , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Female , Flow Cytometry , Humans , Magnetic Resonance Imaging , Male , Mice , Myocytes, Cardiac/metabolism
19.
Front Immunol ; 11: 111, 2020.
Article in English | MEDLINE | ID: mdl-32117263

ABSTRACT

Cartilage lesions and osteoarthritis (OA) presents an ever-increasing clinical and socioeconomic burden. Synovial inflammation and articular inflammatory environment are the key factor for chondrocytes apoptosis and hypertrophy, ectopic bone formation and OA progression. To effectively treat OA, it is critical to develop a drug that skews inflammation toward a pro-chondrogenic microenvironment. In this narrative and critical review, we aim to see the potential use of immune cells modulation or cell therapy as therapeutic alternatives to OA patients. Macrophages are immune cells that are present in synovial lining, with different roles depending on their subtypes. These cells can polarize to pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes, being the latter associated with wound-healing by the production of ARG-1 and pro-chondrogenic cytokines, such as IL-10, IL-1RA, and TGF-b. Emerging evidence reveals that macrophage shift can be determined by several stimuli, apart from the conventional in vitro IL-4, IL-13, and IL-10. Evidences show the potential of physical exercise to induce type 2 response, favoring M2 polarization. Moreover, macrophages in contact with oxLDL have effect on the production of anabolic mediators as TGF-b. In the same direction, type II collagen, that plays a critical role in development and maturation process of chondrocytes, can also induce M2 macrophages, increasing TGF-b. The mTOR pathway activation in macrophages was shown to be able to polarize macrophages in vitro, though further studies are required. The possibility to use mesenchymal stem cells (MSCs) in cartilage restoration have a more concrete literature, besides, MSCs also have the capability to induce M2 macrophages. In the other direction, M1 polarized macrophages inhibit the proliferation and viability of MSCs and impair their ability to immunosuppress the environment, preventing cartilage repair. Therefore, even though MSCs therapeutic researches advances, other sources of M2 polarization are attractive issues, and further studies will contribute to the possibility to manipulate this polarization and to use it as a therapeutic approach in OA patients.


Subject(s)
Cartilage, Articular/immunology , Macrophages/immunology , Osteoarthritis/immunology , Regeneration/immunology , Animals , Cell Polarity/immunology , Cell- and Tissue-Based Therapy/methods , Humans , Immunomodulation , Macrophage Activation , Macrophages/classification , Mesenchymal Stem Cells/immunology , Osteoarthritis/therapy , Synovitis/immunology
20.
Stem Cells Transl Med ; 9(2): 250-260, 2020 02.
Article in English | MEDLINE | ID: mdl-31746562

ABSTRACT

In experimental house dust mite (HDM)-induced allergic asthma, therapeutic administration of a single dose of adipose tissue-derived mesenchymal stromal cells (MSCs) ameliorates lung inflammation but is unable to reverse remodeling. We hypothesized that multiple doses of MSCs might exert better therapeutic effects by reducing lung inflammation and remodeling but might also result in immunosuppressive effects in experimental asthma. HDM was administered intranasally in C57BL/6 mice. After the last HDM challenge, mice received two or three doses of MSCs (105 cells per day) or saline intravenously. An additional cohort of mice received dexamethasone as a positive control for immunosuppression. Two and three doses of MSCs reduced lung inflammation, levels of interleukin (IL)-4, IL-13, and eotaxin; total leukocyte, CD4+ T-cell, and eosinophil counts in bronchoalveolar lavage fluid; and total leukocyte counts in bone marrow, spleen, and mediastinal lymph nodes. Two and three doses of MSCs also reduced collagen fiber content and transforming growth factor-ß levels in lung tissue; however, the three-dose regimen was more effective, and reduced these parameters to control levels, while also decreasing α-actin content in lung tissue. Two and three doses of MSCs improved lung mechanics. Dexamethasone, two and three doses of MSCs similarly increased galectin levels, but only the three-dose regimen increased CD39 levels in the thymus. Dexamethasone and the three-dose, but not the two-dose regimen, also increased levels of programmed death receptor-1 and IL-10, while reducing CD4+ CD8low cell percentage in the thymus. In conclusion, multiple doses of MSCs reduced lung inflammation and remodeling while causing immunosuppression in HDM-induced allergic asthma.


Subject(s)
Asthma/immunology , Cell- and Tissue-Based Therapy/methods , Immunosuppression Therapy/methods , Mesenchymal Stem Cells/metabolism , Animals , Female , Mice
SELECTION OF CITATIONS
SEARCH DETAIL