Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
J Med Food ; 27(8): 749-757, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39017636

ABSTRACT

The study aimed to evaluate the effects of Pereskia aculeata Miller (ora-pro-nobis [OPN]) flour on body and biochemical parameters, thermogenic activity, and molecular expression of markers in the muscle tissue of mice subjected to resistance training (RT). Twelve mice were randomly assigned to two groups (n=6 animals/group): G1: control (Control) fed a standard diet + RT and G2: experimental (OPN) fed a diet based on OPN flour + RT. The RT consisted of a 6-week program using a vertical ladder combined with a fixed weight attached to the animal. Several parameters were measured, including assessment of body composition, biochemical markers, thermogenic activity, and molecular (mRNA expression of interleukin (IL)-6, fibronectin type III domain-containing protein 5 (FNDC5), peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). The OPN group exhibited a decrease in body weight and visceral adiposity, higher energy expenditure, and lipid oxidation rate. In addition, it was observed an increase in muscle volume and in mRNA expression levels of IL-6, FNDC5, PGC-1α, and TFAM. These findings suggest that OPN flour could be a nutritional option to enhance performance in RT.


Subject(s)
Flour , Interleukin-6 , Muscle, Skeletal , Myokines , Resistance Training , Animals , Humans , Male , Mice , Body Composition/drug effects , Energy Metabolism , Fibronectins/metabolism , Fibronectins/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Muscle, Skeletal/metabolism , Myokines/genetics , Myokines/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Physical Conditioning, Animal , Thermogenesis/drug effects
2.
Braz J Med Biol Res ; 57: e13447, 2024.
Article in English | MEDLINE | ID: mdl-38985081

ABSTRACT

Epidemiological surveys show that the incidence of age-related dementia and cognitive impairment is increasing and it has been a heavy burden for society, families, and healthcare systems, making the preservation of cognitive function in an increasingly aging population a major challenge. Exercise is beneficial for brain health, and FDNC5/irisin, a new exercise-induced myokine, is thought to be a beneficial mediator to cognitive function and plays an important role in the crosstalk between skeletal muscle and brain. This review provides a critical assessment of the recent progress in both fundamental and clinical research of FDNC5/irisin in dementia and cognitive impairment-related disorders. Furthermore, we present a novel perspective on the therapeutic effectiveness of FDNC5/irisin in alleviating these conditions.


Subject(s)
Cognitive Dysfunction , Dementia , Fibronectins , Humans , Cognitive Dysfunction/etiology , Fibronectins/metabolism
3.
Sci Rep ; 14(1): 12262, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806563

ABSTRACT

Exercise elicits physiological adaptations, including hyperpnea. However, the mechanisms underlying exercise-induced hyperpnea remain unresolved. Skeletal muscle acts as a secretory organ, releasing irisin (IR) during exercise. Irisin can cross the blood-brain barrier, influencing muscle and tissue metabolism, as well as signaling in the central nervous system (CNS). We evaluated the effect of intracerebroventricular or intraperitoneal injection of IR in adult male rats on the cardiorespiratory and metabolic function during sleep-wake cycle under room air, hypercapnia and hypoxia. Central IR injection caused an inhibition on ventilation (VE) during wakefulness under normoxia, while peripheral IR reduced VE during sleep. Additionally, central IR exacerbates hypercapnic hyperventilation by increasing VE and reducing oxygen consumption. As to cardiovascular regulation, central IR caused an increase in heart rate (HR) across all conditions, while no change was observed following peripheral administration. Finally, central IR attenuated the hypoxia-induced regulated hypothermia and increase sleep episodes, while peripheral IR augmented CO2-induced hypothermia, during wakefulness. Overall, our results suggest that IR act mostly on CNS exerting an inhibitory effect on breathing under resting conditions, while stimulating the hypercapnic ventilatory response and increasing HR. Therefore, IR seems not to be responsible for the exercise-induced hyperpnea, but contributes to the increase in HR.


Subject(s)
Fibronectins , Physical Conditioning, Animal , Animals , Male , Rats , Fibronectins/metabolism , Hypercapnia/metabolism , Hypercapnia/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Heart Rate , Sleep/physiology , Wakefulness/physiology , Oxygen Consumption , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Respiration , Myokines
4.
Cell Biol Int ; 48(6): 883-897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38591778

ABSTRACT

Anoikis is a process of programmed cell death induced by the loss of cell/matrix interactions. In previous work, we have shown that the acquisition of anoikis resistance upregulates syndecan-4 (SDC4) expression in endothelial cells. In addition, SDC4 gene silencing by microRNA interference reverses the transformed phenotype of anoikis-resistant endothelial cells. Due to this role of SDC4 in regulating the behavior of anoikis-resistant endothelial cells, we have evaluated that the functional consequences of SDC4 silencing in the extracellular matrix (ECM) remodeling in anoikis-resistant rabbit aortic endothelial cells submitted to SDC4 gene silencing (miR-Syn4-Adh-1-EC). For this, we evaluated the expression of adhesive proteins, ECM receptors, nonreceptor protein-tyrosine kinases, and ECM-degrading enzymes and their inhibitors. Altered cell behavior was monitored by adhesion, migration, and tube formation assays. We found that SDC4 silencing led to a decrease in migration and angiogenic capacity of anoikis-resistant endothelial cells; this was accompanied by an increase in adhesion to fibronectin. Furthermore, after SDC4 silencing, we observed an increase in the expression of fibronectin, collagen IV, and vitronectin, and a decrease in the expression of integrin α5ß1 and αvß3, besides that, silenced cells show an increase in Src and FAK expression. Quantitative polymerase chain reaction and Western blot analysis demonstrated that SDC4 silencing leads to altered gene and protein expression of MMP2, MMP9, and HSPE. Compared with parental cells, SDC4 silenced cells showed a decrease in nitric oxide production and eNOS expression. In conclusion, these data demonstrate that SDC4 plays an important role in ECM remodeling. In addition, our findings represent an important step toward understanding the mechanism by which SDC4 can reverse the transformed phenotype of anoikis-resistant endothelial cells.


Subject(s)
Anoikis , Endothelial Cells , Extracellular Matrix , Gene Silencing , Syndecan-4 , Syndecan-4/metabolism , Syndecan-4/genetics , Animals , Extracellular Matrix/metabolism , Endothelial Cells/metabolism , Rabbits , Cell Adhesion , Cell Movement , Fibronectins/metabolism , Cells, Cultured
5.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569815

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia in older adults, having a significant global burden and increasing prevalence. Current treatments for AD only provide symptomatic relief and do not cure the disease. Physical activity has been extensively studied as a potential preventive measure against cognitive decline and AD. Recent research has identified a hormone called irisin, which is produced during exercise, that has shown promising effects on cognitive function. Irisin acts on the brain by promoting neuroprotection by enhancing the growth and survival of neurons. It also plays a role in metabolism, energy regulation, and glucose homeostasis. Furthermore, irisin has been found to modulate autophagy, which is a cellular process involved in the clearance of protein aggregates, which are a hallmark of AD. Additionally, irisin has been shown to protect against cell death, apoptosis, oxidative stress, and neuroinflammation, all of which are implicated in AD pathogenesis. However, further research is needed to fully understand the mechanisms and therapeutic potential of irisin in AD. Despite the current gaps in knowledge, irisin holds promise as a potential therapeutic target for slowing cognitive decline and improving quality of life in AD patients.


Subject(s)
Alzheimer Disease , Healthy Aging , Aged , Humans , Alzheimer Disease/metabolism , Fibronectins/metabolism , Neuroprotection , Quality of Life
6.
Braz J Microbiol ; 54(4): 2577-2585, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37442880

ABSTRACT

Scedosporium apiospermum is a widespread, emerging, and multidrug-resistant filamentous fungus that can cause localized and disseminated infections. The initial step in the infection process involves the adhesion of the fungus to host cells and/or extracellular matrix components. However, the mechanisms of adhesion involving surface molecules in S. apiospermum are not well understood. Previous studies have suggested that the binding of fungal receptors to fibronectin enhances its ability to attach to and infect host cells. The present study investigated the effects of fibronectin on adhesion events of S. apiospermum. The results revealed that conidial cells were able to bind to both immobilized and soluble human fibronectin in a typically dose-dependent manner. Moreover, fibronectin binding was virtually abolished in trypsin-treated conidia, suggesting the proteinaceous nature of the binding site. Western blotting assay, using fibronectin and anti-fibronectin antibody, evidenced 7 polypeptides with molecular masses ranging from 55 to 17 kDa in both conidial and mycelial extracts. Fibronectin-binding molecules were localized by immunofluorescence and immunocytochemistry microscopies at the cell wall and in intracellular compartments of S. apiospermum cells. Furthermore, a possible function for the fibronectin-like molecules of S. apiospermum in the interaction with host lung cells was assessed. Conidia pre-treated with soluble fibronectin showed a significant reduction in adhesion to either epithelial or fibroblast lung cells in a classically dose-dependent manner. Similarly, the pre-treatment of the lung cells with anti-fibronectin antibodies considerably diminished the adhesion. Collectively, the results demonstrated the presence of fibronectin-binding molecules in S. apiospermum cells and their role in adhesive events.


Subject(s)
Scedosporium , Humans , Fibronectins/metabolism , Mycelium/metabolism , Lung
7.
Glycobiology ; 33(9): 715-731, 2023 10 29.
Article in English | MEDLINE | ID: mdl-37289485

ABSTRACT

Hypercoagulability, a major complication of metastatic cancers, has usually been treated with heparins from natural sources, or with their synthetic derivatives, which are under intense investigation in clinical oncology. However, the use of heparin has been challenging for patients with risk of severe bleeding. While the systemic administration of heparins, in preclinical models, has shown primarily attenuating effects on metastasis, their direct effect on established solid tumors has generated contradictory outcomes. We investigated the direct antitumoral properties of two sulfated fucans isolated from marine echinoderms, FucSulf1 and FucSulf2, which exhibit anticoagulant activity with mild hemorrhagic potential. Unlike heparin, sulfated fucans significantly inhibited tumor cell proliferation (by ~30-50%), and inhibited tumor migration and invasion in vitro. We found that FucSulf1 and FucSulf2 interacted with fibronectin as efficiently as heparin, leading to loss of prostate cancer and melanoma cell spreading. The sulfated fucans increased the endocytosis of ß1 integrin and neuropilin-1 chains, two cell receptors implicated in fibronectin-dependent adhesion. The treatment of cancer cells with both sulfated fucans, but not with heparin, also triggered intracellular focal adhesion kinase (FAK) degradation, with a consequent overall decrease in activated focal adhesion kinase levels. Finally, only sulfated fucans inhibited the growth of B16-F10 melanoma cells implanted in the dermis of syngeneic C57/BL6 mice. FucSulf1 and FucSulf2 arise from this study as candidates for the design of possible alternatives to long-term treatments of cancer patients with heparins, with the advantage of also controlling local growth and invasion of malignant cells.


Subject(s)
Integrin beta1 , Melanoma , Male , Animals , Humans , Mice , Focal Adhesion Protein-Tyrosine Kinases , Integrin beta1/metabolism , Fibronectins/metabolism , Neuropilin-1 , Heparin/pharmacology , Endocytosis
8.
Front Endocrinol (Lausanne) ; 14: 1106529, 2023.
Article in English | MEDLINE | ID: mdl-36843614

ABSTRACT

Human beings lead largely sedentary lives. From an evolutionary perspective, such lifestyle is not beneficial to health. Exercise can promote many enabling pathways, particularly through circulating exerkines, to optimize individual health and quality of life. Such benefits might explain the protective effects of exercise against aging and noncommunicable diseases. Nevertheless, the miRNA-mediated molecular mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of exercise remain poorly understood. In this mini review, we focused on the exerkine, irisin, mainly produced by muscle contraction during adaptation to exercise and its beneficial effects on body homeostasis. Herein, the complex role of irisin in metabolism and inflammation is described, including its subsequent effects on thermogenesis through browning to control obesity and improve glycemic regulation for diabetes mellitus control, its potential to improve cognitive function (via brain derived neurotrophic factor), and its pathways of action and role in aging.


Subject(s)
Fibronectins , Muscle, Skeletal , Humans , Fibronectins/metabolism , Muscle, Skeletal/metabolism , Quality of Life , Anti-Inflammatory Agents/metabolism , Aging , Oxidation-Reduction
9.
eNeuro ; 10(2)2023 02.
Article in English | MEDLINE | ID: mdl-36697257

ABSTRACT

Major depressive disorder (MDD) is a major cause of disability in adults. MDD is both a comorbidity and a risk factor for Alzheimer's disease (AD), and regular physical exercise has been associated with reduced incidence and severity of MDD and AD. Irisin is an exercise-induced myokine derived from proteolytic processing of fibronectin type III domain-containing protein 5 (FNDC5). FNDC5/irisin is reduced in the brains of AD patients and mouse models. However, whether brain FNDC5/irisin expression is altered in depression remains elusive. Here, we investigate changes in fndc5 expression in postmortem brain tissue from MDD individuals and mouse models of depression. We found decreased fndc5 expression in the MDD prefrontal cortex, both with and without psychotic traits. We further demonstrate that the induction of depressive-like behavior in male mice by lipopolysaccharide decreased fndc5 expression in the frontal cortex, but not in the hippocampus. Conversely, chronic corticosterone administration increased fndc5 expression in the frontal cortex, but not in the hippocampus. Social isolation in mice did not result in altered fndc5 expression in either frontal cortex or hippocampus. Finally, fluoxetine, but not other antidepressants, increased fndc5 gene expression in the mouse frontal cortex. Results indicate a region-specific modulation of fndc5 in depressive-like behavior and by antidepressant in mice. Our finding of decreased prefrontal cortex fndc5 expression in MDD individuals differs from results in mice, highlighting the importance of carefully interpreting observations in mice. The reduction in fndc5 mRNA suggests that decreased central FNDC5/irisin could comprise a shared pathologic mechanism between MDD and AD.


Subject(s)
Depressive Disorder, Major , Male , Mice , Animals , Depressive Disorder, Major/metabolism , Depression , Fibronectins/genetics , Fibronectins/metabolism , Brain/metabolism , Transcription Factors/metabolism , Disease Models, Animal , Muscle, Skeletal/metabolism
10.
Article in English | MEDLINE | ID: mdl-36642213

ABSTRACT

The anti-obesity thyroid hormone, triiodothyronine (T3), and irisin, an exercise- and/or cold-induced myokine, stimulate thermogenesis and energy consumption while decreasing lipid accumulation. The involvement of ATP signaling in adipocyte cell function and obesity has attracted increasing attention, but the crosstalk between the purinergic signaling cascade and anti-obesity hormones lacks experimental evidence. In this study, we investigated the effects of T3 and irisin in the transcriptomics of membrane-bound purinoceptors, ectonucleotidase enzymes and nucleoside transporters participating in the purinergic signaling in cultured human adipocytes. The RNA-seq analysis revealed that differentiated adipocytes express high amounts of ADORA1, P2RY11, P2RY12, and P2RX6 gene transcripts, along with abundant levels of transcriptional products encoding to purine metabolizing enzymes (ENPP2, ENPP1, NT5E, ADA and ADK) and transporters (SLC29A1, SCL29A2). The transcriptomics of purinergic signaling markers changed in parallel to the upsurge of "browning" adipocyte markers, like UCP1 and P2RX5, after treatment with T3 and irisin. Upregulation of ADORA1, ADORA2A and P2RX4 gene transcription was obtained with irisin, whereas T3 preferentially upregulated NT5E, SLC29A2 and P2RY11 genes. Irisin was more powerful than T3 towards inhibition of the leptin gene transcription, the SCL29A1 gene encoding for the ENT1 transporter, the E-NPP2 (autotaxin) gene, and genes that encode for two ADP-sensitive P2Y receptors, P2RY1 and P2RY12. These findings indicate that anti-obesity irisin and T3 hormones differentially affect the purinergic signaling transcriptomics, which might point towards new directions for the treatment of obesity and related metabolic disorders that are worth to be pursued in future functional studies.


Subject(s)
Fibronectins , Transcriptome , Triiodothyronine , Humans , Adipocytes/drug effects , Adipocytes/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Obesity/genetics , Obesity/metabolism , RNA-Seq , Triiodothyronine/pharmacology , Triiodothyronine/metabolism
11.
Immunol Res ; 71(1): 92-104, 2023 02.
Article in English | MEDLINE | ID: mdl-36197587

ABSTRACT

Macrophage (Mϕ) polarization is an essential phenomenon for the maintenance of homeostasis and tissue repair, and represents the event by which Mϕ reach divergent functional phenotypes as a result to specific stimuli and/or microenvironmental signals. Mϕ can be polarized into two main phenotypes, M1 or classically activated and M2 or alternatively activated. These two categories diverge in many aspects, such as secreted cytokines, markers of cell surface, and biological functions. Over the last 10 years, many potential markers have been proposed for both M1 and M2 human Mϕ. However, there is scarce information regarding the glycophenotype adopted by these cells. Here, we show that M2- but not M1-polarized Mϕ expresses high levels of an unusual glycoform of fibronectin (FN), named O-glycosylated oncofetal FN (onf-FN), found in fetal/cancer cells, but not in healthy tissues. The onf-FN expression was confirmed in vitro by Western blot and real-time RT-qPCR in primary and cell line monocyte-derived Mϕ. onf-FN was induced by IL-4 and IL-13, but not by pro-inflammatory stimuli (LPS and INF-γ). RNA and protein analysis clearly demonstrated that it is specifically associated with the M2 polarization. In conclusion, we show by the first time that O-glycosylated onf-FN is expressed by M2-polarized Mϕ.


Subject(s)
Fibronectins , Macrophages , Humans , Fibronectins/metabolism , Macrophages/metabolism , Cytokines/metabolism , Cell Line
12.
Curr Vasc Pharmacol ; 20(3): 205-220, 2022.
Article in English | MEDLINE | ID: mdl-35538838

ABSTRACT

Endothelial dysfunction is a crucial physiopathological mechanism for cardiovascular diseases that results from the harmful impact of metabolic disorders. Irisin, a recently discovered adipomyokine, has been shown to exert beneficial metabolic effects by increasing energy consumption, improving insulin sensitivity, and reducing the proinflammatory milieu. Multiple preclinical models have assessed irisin's possible role in the development of endothelial dysfunction, displaying that treatment with exogenous irisin can decrease the production of oxidative stress mediators by up-regulating Akt/mTOR/Nrf2 pathway, promote endothelial-dependent vasodilatation through the activation of AMPK-PI3K-AkteNOS pathway, and increase the endothelial cell viability by activation of ERK proliferation pathway and downregulation of Bad/Bax/Caspase 3 pro-apoptotic pathway. However, there is scarce evidence of these mechanisms in clinical studies, and available results are controversial. Some have shown negative correlations of irisin levels with the burden of coronary atherosclerosis and leukocyte adhesion molecules' expression. Others have demonstrated associations between irisin levels and increased atherosclerosis risk and higher carotid intima-media thickness. Since the role of irisin in endothelial damage remains unclear, in this review, we compare, contrast, and integrate the current knowledge from preclinical and clinical studies to elucidate the potential preventive role and the underlying mechanisms and pathways of irisin in endothelial dysfunction. This review also comprises original figures to illustrate these mechanisms.


Subject(s)
Endothelium/metabolism , Fibronectins/metabolism , AMP-Activated Protein Kinases/metabolism , Carotid Intima-Media Thickness , Caspase 3/metabolism , Endothelium/pathology , Humans , NF-E2-Related Factor 2 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases , bcl-2-Associated X Protein
13.
Sci Rep ; 12(1): 9062, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641586

ABSTRACT

In patients with diabetes, it has been suggested that physical exercise may reduce albuminuria and the progression of renal disease. However, the molecular mechanism by which physical exercise protects the kidney in diabetes remains poorly understood. The aim of the present study was to determine the contribution of muscle irisin secretion induced by aerobic physical exercise with the subsequent activation of AMPK for kidney protection under diabetic conditions. Aerobic physical exercise in rats protected the kidney in streptozotocin-induced diabetes. It reduced albuminuria, glomerular hypertrophy, and glomerular expression of collagen IV and fibronectin, as well as markers of kidney inflammation, when compared to sedentary diabetic rats. These effects were associated with elevation in muscle FNDC5/irisin and activity of AMPK in the diabetic kidney. However, the beneficial effects of exercise were lost when the diabetic rats were treated with CycloRGDyK, that in the bone it has been described as an irisin receptor blocker. In cultured human tubular (HK-2) cells, treatment with recombinant irisin counteracted the effect of high glucose in a dose-dependent manner. Irisin, per se, also activated AMPK in HK-2 cells. It is concluded that in diabetes, the renal protective effect of exercise may be mediated by the irisin/AMPK pathway.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Exercise , Fibronectins , AMP-Activated Protein Kinases/metabolism , Albuminuria , Animals , Diabetic Nephropathies/therapy , Fibronectins/metabolism , Humans , Kidney/metabolism , Physical Conditioning, Animal , Rats
14.
Mol Biol Rep ; 49(6): 4965-4975, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35092564

ABSTRACT

BACKGROUND: Depression is a global disease that affects the physical and mental health of people of all ages. Non-pharmacological and unconventional methods of treatment, such as regular physical exercise, have been recommended to treat depression. METHODS: Here, we briefly review the literature about the physiological and molecular mechanisms of exercise antidepressants in depressive-like behavior in animal models of depression. RESULTS: The main hysiological and molecular mechanisms of physical exercise in depression include blood flow changes in several areas of the brain, increase in brain serotonin synthesis, increase in antioxidant enzymes, increase in serum and brain brain-derived neuro factor (BDNF) levels, decrease in cortisol levels and reduced inflammation in peripheral and brain tissues. Physical exercise also leads to increased activation of the phosphatidylinositol-3-kinase (PI3K), PGC-1α/FNDC5/Irisin pathway, BDNF concentrations (serum and cerebral), extracellular signal-regulated kinase and cAMP-response element binding protein (mainly in neurons of the hippocampus and prefrontal cortex), which together contribute to fight or inhibit the development of depression symptoms. These molecular and physiological mechanisms work in synchrony, further enhancing their effects. CONCLUSION: Physical exercise can be used as a safe and effective non-pharmacological treatment in depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Physical Conditioning, Animal , Animals , Antioxidants , Brain-Derived Neurotrophic Factor/metabolism , Depression/therapy , Disease Models, Animal , Exercise , Fibronectins/metabolism , Hippocampus/metabolism , Humans , Hydrocortisone , Models, Animal , Serotonin
15.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34815373

ABSTRACT

The prolactin hormone (PRL), in addition to its known effects on breast development and lactation, exerts effects on the immune system, including pleiotropic effects on the thymus. The aim of this study was to evaluate the influence of PRL on the epithelial compartment of the thymus. Thymic epithelial cells (TECs) (2BH4 cells) and fresh thymocytes were used. Immunofluorescence assay revealed that PRL treatment (10 ng/ mL) increases the deposition of laminin and expression of the chemokine CXCL12 in 2BH4 cells. However, no change was observed in the deposition of fibronectin. Moreover, PRL altered F-actin polymerisation, allowing the formation of focal adhesion complexes in treated cells. When 2BH4 cells were pre-treated with PRL, thymocyte adhesion was not altered. However, in the cell migration assay, pre-treatment with PRL potentiated the chemotactic effect of CXCL12 on the migration of total, double-positive, CD4-positive, and CD8-positive thymocytes. Together, the results of this study demonstrate the effect of PRL on thymic epithelial cells, particularly on CXCL12-driven thymocyte migration, confirming that this hormone is a regulator of thymic physiology.


Subject(s)
Chemokine CXCL12/metabolism , Prolactin/pharmacology , Thymocytes/cytology , Thymus Gland/cytology , Actins/metabolism , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Cytoskeleton/drug effects , Epithelial Cells , Extracellular Matrix/drug effects , Female , Fibronectins/metabolism , Male , Mice, Inbred C57BL , Thymocytes/drug effects , Thymocytes/physiology
16.
J Therm Biol ; 99: 103010, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34420640

ABSTRACT

Irisin is an adipomyokine that increases browning of adipose tissue and thermogenesis, thereby protecting against obesity and insulin resistance. However, the correlation between irisin, brown adipose tissue (BAT), and childhood obesity, as well as its association with an increased risk of developing metabolic diseases, has not been completely elucidated. This study aimed to investigate the association between irisin levels and BAT activity measured by infrared thermography among children and verify their correlation with anthropometric and metabolic parameters. This study included 42 children with normal weight and 18 overweight/obese children. Anthropometric data, irisin levels, lipid and glucose profile were evaluated. The percentage of the thermally active portion of the supraclavicular area (%AreaSCR) before and after a cold stimulus was measured by infrared thermography, and the differences between the percentages of thermally active (Δ%AreaSCR) was calculated as an index of BAT activation. The results were correlated with anthropometric and metabolic parameters. Circulating irisin levels was positive correlated with age (rho=0.327, P= 0.011), body mass index (BMI) (rho=0.707, P<0.001), waist circumference (rho=0.624, P<0.001), total cholesterol (rho=0.361, P=0.044), triglycerides (rho=0.419, P=0.001), and low-density lipoprotein cholesterol (LDLc) (rho=0.381, P= 0.003). Active BAT was negatively correlated with BMI, waist circumference, triglycerides, LDLc and irisin levels. We observed that normal weight children increased significantly the Δ% AreaSCR as compared to overweight/obese children. In conclusion, circulating irisin levels and BAT activity appear to have opposing roles, since normal weight children had greater BAT activity and lower circulating levels of irisin.


Subject(s)
Adipose Tissue, Brown/metabolism , Fibronectins/metabolism , Pediatric Obesity/metabolism , Child , Female , Fibronectins/blood , Humans , Male , Metabolome , Pediatric Obesity/blood , Thermography
17.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946948

ABSTRACT

Neurodegenerative diseases are characterized by increased permeability of the blood-brain barrier (BBB) due to alterations in cellular and structural components of the neurovascular unit, particularly in association with neuroinflammation. A previous screening study of peptide ligands to identify molecular alterations of the BBB in neuroinflammation by phage-display, revealed that phage clone 88 presented specific binding affinity to endothelial cells under inflammatory conditions in vivo and in vitro. Here, we aimed to identify the possible target receptor of the peptide ligand 88 expressed under inflammatory conditions. A cross-link test between phage-peptide-88 with IL-1ß-stimulated human hCMEC cells, followed by mass spectrometry analysis, was used to identify the target of peptide-88. We modeled the epitope-receptor molecular interaction between peptide-88 and its target by using docking simulations. Three proteins were selected as potential target candidates and tested in enzyme-linked immunosorbent assays with peptide-88: fibronectin, laminin subunit α5 and laminin subunit ß-1. Among them, only laminin subunit ß-1 presented measurable interaction with peptide-88. Peptide-88 showed specific interaction with laminin subunit ß-1, highlighting its importance as a potential biomarker of the laminin changes that may occur at the BBB endothelial cells under pathological inflammation conditions.


Subject(s)
Blood-Brain Barrier , Endothelial Cells/metabolism , Inflammation/metabolism , Laminin/metabolism , Animals , Bacteriophage M13 , Biomarkers , Cells, Cultured , Cross-Linking Reagents , Fibronectins/metabolism , Gene Ontology , Humans , Interleukin-1beta/pharmacology , Models, Molecular , Molecular Docking Simulation , Peptide Library , Protein Binding , Protein Conformation , Protein Interaction Mapping , Rats
18.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805743

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lethal age-related lung disease whose pathogenesis involves an aberrant response of alveolar epithelial cells (AEC). Activated epithelial cells secrete mediators that participate in the activation of fibroblasts and the excessive deposition of extracellular matrix proteins. Previous studies indicate that matrix metalloproteinase 14 (MMP14) is increased in the lung epithelium in patients with IPF, however, the role of this membrane-type matrix metalloproteinase has not been elucidated. In this study, the role of Mmp14 was explored in experimental lung fibrosis induced with bleomycin in a conditional mouse model of lung epithelial MMP14-specific genetic deletion. Our results show that epithelial Mmp14 deficiency in mice increases the severity and extension of fibrotic injury and affects the resolution of the lesions. Gain-and loss-of-function experiments with human epithelial cell line A549 demonstrated that cells with a deficiency of MMP14 exhibited increased senescence-associated markers. Moreover, conditioned medium from these cells increased fibroblast expression of fibrotic molecules. These findings suggest a new anti-fibrotic mechanism of MMP14 associated with anti-senescent activity, and consequently, its absence results in impaired lung repair. Increased MMP14 in IPF may represent an anti-fibrotic mechanism that is overwhelmed by the strong profibrotic microenvironment that characterizes this disease.


Subject(s)
Epithelial Cells/pathology , Idiopathic Pulmonary Fibrosis/genetics , Matrix Metalloproteinase 14/genetics , Pulmonary Alveoli/metabolism , A549 Cells , Actins/genetics , Actins/metabolism , Animals , Bleomycin/administration & dosage , Cellular Senescence/genetics , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression Regulation , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Matrix Metalloproteinase 14/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
19.
Nat Commun ; 12(1): 1140, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602902

ABSTRACT

Clostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5ß1 and vitronectin-αvß1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.


Subject(s)
Clostridioides difficile/physiology , Clostridium Infections/microbiology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Intestines/microbiology , Intestines/pathology , Spores, Bacterial/physiology , Animals , Bacterial Adhesion/drug effects , Bacterial Proteins/metabolism , Cell Line , Clostridioides difficile/drug effects , Clostridioides difficile/ultrastructure , Collagen/metabolism , Endocytosis , Epithelial Cells/ultrastructure , Female , Fibronectins/metabolism , Humans , Integrins/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice, Inbred C57BL , Nystatin/pharmacology , Protein Binding/drug effects , Recurrence , Spores, Bacterial/drug effects , Spores, Bacterial/ultrastructure , Taurocholic Acid/pharmacology , Vitronectin/metabolism
20.
Behav Brain Res ; 400: 113040, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33279634

ABSTRACT

Several lines of evidence have consistently indicated that physical exercise has antidepressant effects by improving hippocampal function, although the signaling pathways underpinning these responses are not well established. Therefore, this study investigated the role of mechanistic target of rapamycin complex 1 (mTORC1) and fibronectin type III domain-containing protein 5 (FNDC5)/irisin signaling in the antidepressant-like effect of physical exercise. We showed that physical exercise (treadmill running - 45 min/day/5 days/week for 4 weeks) produced an antidepressant-like effect as indicated by a reduction on the immobility time in mice subjected to the forced swimming test (FST) without altering locomotor activity in the open field test (OFT). Rapamycin (a selective mTORC1 inhibitor, 0.2 nmol/site, i.c.v.) administration completely abolished the antidepressant-like effect of physical exercise in the FST, suggesting that mTORC1 activation plays a role for its behavioral effect. Accordingly, physical exercise increased the number of phosphorylated mTORC1 (Ser2448)-positive cells in the entire and ventral subgranular zone of the hippocampal dentate gyrus. Physical exercise was also effective in augmenting the hippocampal FNDC5/irisin immunocontent, but rapamycin administration did not alter this effect. Our results reinforce the notion that physical exercise exerts an antidepressant-like effect and identifies the mTORC1-mediated signaling pathway as a target for its behavioral effects. This study provides additional evidence that physical exercise increases hippocampal FNDC5/irisin immunocontent, but this effect seems to be independent on hippocampal mTORC1 activation. Altogether the results contribute to elucidate possible molecular targets implicated in the antidepressant effects of physical exercise and highlight the role of mTORC1 signaling for its behavioral response.


Subject(s)
Fibronectins/metabolism , Hippocampus/metabolism , Locomotion/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Physical Conditioning, Animal/physiology , Signal Transduction/physiology , Sirolimus/pharmacology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Female , Hippocampus/drug effects , Locomotion/drug effects , Mechanistic Target of Rapamycin Complex 1/drug effects , Mice , Signal Transduction/drug effects , Sirolimus/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL