Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999949

ABSTRACT

It is known that the inflammation process leading to oxidative stress and thyroid hormone metabolism dysfunction is highly altered in metabolic dysfunction associated with steatotic liver disease (MASLD). This study aims to address the effect of ornithine aspartate (LOLA) and vitamin E (VitE) in improving these processes. Adult Sprague-Dawley rats were assigned to five groups and treated for 28 weeks: controls (n = 10) received a standard diet (for 28 weeks) plus gavage with distilled water (DW) from weeks 16 to 28. MASLD groups received a high-fat and choline-deficient diet for 28 weeks (MASLD group) and daily gavage with 200 mg/kg/day of LOLA, or twice a week with 150 mg of VitE from weeks 16-28. LOLA diminished collagen deposition (p = 0.006). The same treatment diminished carbonyl, TBARS, and sulfhydryl levels and GPx activity (p < 0.001). Type 3 deiodinase increased in the MASLD group, downregulating T3-controlled genes, which was corrected in the presence of LOLA. LOLA also promoted a near-normalization of complex II, SDH, and GDH activities (p < 0.001) and improved reticulum stress, with a reduction in GRP78 and HSPA9/GRP75 protein levels (p < 0.05). The enhanced energy production and metabolism of thyroid hormones, probably because of GSH replenishment provided by the L-glutamate portion of LOLA, opens a new therapeutic approach for MASLD.


Subject(s)
Oxidative Stress , Rats, Sprague-Dawley , Vitamin E , Animals , Rats , Vitamin E/pharmacology , Vitamin E/metabolism , Male , Oxidative Stress/drug effects , Fatty Liver/metabolism , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Liver/drug effects , Thyroid Hormones/metabolism , Dipeptides
2.
Clin Transl Oncol ; 26(9): 2075-2083, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38491294

ABSTRACT

Thyroid hormone has been shown to have both tumor-promoting and tumor-suppressing actions, which has led to significant debate over its involvement in the development of cancer. Proliferation, apoptosis, invasiveness, and angiogenesis are all aspects of cancer that are affected by the thyroid hormones T3 and T4, according to research conducted in animal models and in vitro experiments. The effects of thyroid hormones on cancer cells are mediated by many non-genomic mechanisms, one of which involves the activation of the plasma membrane receptor integrin αvß3. Typically, abnormal amounts of thyroid hormones are linked to a higher occurrence of cancer. Both benign and malignant thyroid disorders were found to be associated with an increased risk of extra-thyroidal malignancies, specifically colon, breast, prostate, melanoma, and lung cancers. The purpose of this review was to shed light on this link to define which types of cancer are sensitive to thyroid hormones and, as a result, are anticipated to respond favorably to treatment of the thyroid hormone axis.


Subject(s)
Neoplasms , Thyroid Diseases , Thyroid Diseases/complications , Neoplasms/complications , Neoplasms/pathology , Neoplasms/therapy , Thyroid Hormones/metabolism , Disease Progression , Humans
3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894927

ABSTRACT

Parabens are classified as endocrine-disrupting chemicals (EDCs) capable of interfering with the normal functioning of the thyroid, affecting the proper regulation of the biosynthesis of thyroid hormones (THs), which is controlled by the hypothalamic-pituitary-thyroid axis (HPT). Given the crucial role of these hormones in health and the growing evidence of diseases related to thyroid dysfunction, this review looks at the effects of paraben exposure on the thyroid. In this study, we considered research carried out in vitro and in vivo and epidemiological studies published between 1951 and 2023, which demonstrated an association between exposure to parabens and dysfunctions of the HPT axis. In humans, exposure to parabens increases thyroid-stimulating hormone (TSH) levels, while exposure decreases TSH levels in rodents. The effects on THs levels are also poorly described, as well as peripheral metabolism. Regardless, recent studies have shown different actions between different subtypes of parabens on the HPT axis, which allows us to speculate that the mechanism of action of these parabens is different. Furthermore, studies of exposure to parabens are more evident in women than in men. Therefore, future studies are needed to clarify the effects of exposure to parabens and their mechanisms of action on this axis.


Subject(s)
Parabens , Thyroid Gland , Male , Humans , Female , Thyroid Gland/metabolism , Parabens/toxicity , Thyroid Hormones/metabolism , Hormones/metabolism , Thyrotropin/metabolism
4.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834051

ABSTRACT

The prevalence of hypothyroidism in patients with nonalcoholic fatty liver disease (NAFLD) is high (22.4%). Thyroid hormones (THs) regulate many metabolic activities in the liver by promoting the export and oxidation of lipids, as well as de novo lipogenesis. They also control hepatic insulin sensitivity and suppress hepatic gluconeogenesis. Because of its importance in lipid and carbohydrate metabolism, the involvement of thyroid dysfunction in the pathogenesis of NAFLD seems plausible. The mechanisms implicated in this relationship include high thyroid-stimulating hormone (TSH) levels, low TH levels, and chronic inflammation. The activity of the TH receptor (THR)-ß in response to THs is essential in the pathogenesis of hypothyroidism-induced NAFLD. Therefore, an orally active selective liver THR-ß agonist, Resmetirom (MGL-3196), was developed, and has been shown to reduce liver fat content, and as a secondary end point, to improve nonalcoholic steatohepatitis. The treatment of NAFLD with THR-ß agonists seems quite promising, and other agonists are currently under development and investigation. This review aims to shine a light on the pathophysiological and epidemiological evidence regarding this relationship and the effect that treatment with THs and selective liver THR-ß agonists have on hepatic lipid metabolism.


Subject(s)
Hypothyroidism , Non-alcoholic Fatty Liver Disease , Thyroid Diseases , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Thyroid Diseases/pathology , Thyroid Hormones/metabolism , Hypothyroidism/complications , Gluconeogenesis
5.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446225

ABSTRACT

Thyrotropin-releasing hormone (TRH) is a tripeptide that regulates the neuroendocrine thyroid axis. Moreover, its widespread brain distribution has indicated that it is a relevant neuromodulator of behaviors such as feeding, arousal, anxiety, and locomotion. Importantly, it is also a neurotrophic peptide, and thus may halt the development of neurodegenerative diseases and improve mood-related disorders. Its neuroprotective actions on those pathologies and behaviors have been limited due to its poor intestinal and blood-brain barrier permeability, and because it is rapidly degraded by a serum enzyme. As new strategies such as TRH intranasal delivery emerge, a renewed interest in the peptide has arisen. TRH analogs have proven to be safe in animals and humans, while not inducing alterations in thyroid hormones' levels. In this review, we integrate research from different approaches, aiming to demonstrate the therapeutic effects of TRH, and to summarize new efforts to prolong and facilitate the peptide's actions to improve symptoms and the progression of several pathologies.


Subject(s)
Brain , Thyrotropin-Releasing Hormone , Animals , Humans , Thyrotropin-Releasing Hormone/therapeutic use , Thyrotropin-Releasing Hormone/metabolism , Brain/metabolism , Thyroid Gland/metabolism , Peptides/metabolism , Thyroid Hormones/metabolism
6.
Front Endocrinol (Lausanne) ; 14: 1208182, 2023.
Article in English | MEDLINE | ID: mdl-37492199

ABSTRACT

Thyroid hormones (THs) regulate tissue remodeling processes during early- and post-embryonic stages in vertebrates. The Mexican axolotl (Ambystoma mexicanum) is a neotenic species that has lost the ability to undergo metamorphosis; however, it can be artificially induced by exogenous administration of thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3). Another TH derivative with demonstrative biological effects in fish and mammals is 3,5-diiodo-L-thyronine (3,5-T2). Because the effects of this bioactive TH remains unexplored in other vertebrates, we hypothesized that it could be biologically active in amphibians and, therefore, could induce metamorphosis in axolotl. We performed a 3,5-T2 treatment by immersion and observed that the secondary gills were retracted, similar to the onset stage phenotype; however, tissue regeneration was observed after treatment withdrawal. In contrast, T4 and T3 immersion equimolar treatments as well as a four-fold increase in 3,5-T2 concentration triggered complete metamorphosis. To identify the possible molecular mechanisms that could explain the contrasting reversible or irreversible effects of 3,5-T2 and T3 upon gill retraction, we performed a transcriptomic analysis of differential expression genes in the gills of control, 3,5-T2-treated, and T3-treated axolotls. We found that both THs modify gene expression patterns. T3 regulates 10 times more genes than 3,5-T2, suggesting that the latter has a lower affinity for TH receptors (TRs) or that these hormones could act through different TR isoforms. However, both TH treatments regulated different gene sets known to participate in tissue development and cell cycle processes. In conclusion, 3,5-T2 is a bioactive iodothyronine that promoted partial gill retraction but induced full metamorphosis in higher concentrations. Differential effects on gill retraction after 3,5,-T2 or T3 treatment could be explained by the activation of different clusters of genes related with apoptosis, regeneration, and proliferation; in addition, these effects could be initially mediated by TRs that are expressed in gills. This study showed, for the first time, the 3,5,-T2 bioactivity in a neotenic amphibian.


Subject(s)
Ambystoma mexicanum , Gills , Animals , Ambystoma mexicanum/metabolism , Gills/metabolism , Thyroxine/pharmacology , Thyroid Hormones/metabolism , Mammals/metabolism
7.
Cells ; 12(7)2023 03 27.
Article in English | MEDLINE | ID: mdl-37048095

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) has gained worldwide attention as a public health problem. Nonetheless, lack of enough mechanistic knowledge restrains effective treatments. It is known that thyroid hormone triiodothyronine (T3) regulates hepatic lipid metabolism, and mitochondrial function. Liver dysfunction of type 3 deiodinase (D3) contributes to MAFLD, but its role is not fully understood. OBJECTIVE: To evaluate the role of D3 in the progression of MAFLD in an animal model. METHODOLOGY: Male/adult Sprague Dawley rats (n = 20) were allocated to a control group (2.93 kcal/g) and high-fat diet group (4.3 kcal/g). Euthanasia took place on the 28th week. D3 activity and expression, Uncoupling Protein 2 (UCP2) and type 1 deiodinase (D1) expression, oxidative stress status, mitochondrial, Krebs cycle and endoplasmic reticulum homeostasis in liver tissue were measured. RESULTS: We observed an increase in D3 activity/expression (p < 0.001) related to increased thiobarbituric acid reactive substances (TBARS) and carbonyls and diminished reduced glutathione (GSH) in the MAFLD group (p < 0.05). There was a D3-dependent decrease in UCP2 expression (p = 0.01), mitochondrial capacity, respiratory activity with increased endoplasmic reticulum stress in the MAFLD group (p < 0.001). Surprisingly, in an environment with lower T3 levels due to high D3 activity, we observed an augmented alpha-ketoglutarate dehydrogenase (KGDH) and glutamate dehydrogenase (GDH) enzymes activity (p < 0.05). CONCLUSION: Induced D3, triggered by changes in the REDOX state, decreases T3 availability and hepatic mitochondrial capacity. The Krebs cycle enzymes were altered as well as endoplasmic reticulum stress. Taken together, these results shed new light on the role of D3 metabolism in MAFLD.


Subject(s)
Iodide Peroxidase , Non-alcoholic Fatty Liver Disease , Rats , Animals , Male , Iodide Peroxidase/metabolism , Rats, Sprague-Dawley , Thyroid Hormones/metabolism , Triiodothyronine/metabolism
8.
Exp Physiol ; 108(3): 412-419, 2023 03.
Article in English | MEDLINE | ID: mdl-36651722

ABSTRACT

NEW FINDINGS: What is the central question of this study? Do alterations in thyroid status affect haemodynamic parameters and echocardiographic measurements in the rat postnatal heart, and calcium handling, contractility, relaxation and cardiolipin content in isolated rat cardiomyocytes? What is the main finding and its importance? An imbalance in phospholipids of the mitochondrial membrane such as cardiolipin is related to defects in mitochondrial function. T3 -dependent cardiolipin signals contribute to the maintenance of mitochondrial homeostasis and involve Ca2+ handling, this pathway being more important in hypothyroidism. ABSTRACT: The objective of this study was to evaluate whether alterations in thyroid status affect (1) haemodynamic parameters and echocardiographic measurements in the rat postnatal heart, and (2) calcium handling, contractility, relaxation and cardiolipin content in isolated rat cardiomyocytes. Sprague-Dawley rats aged 2 months treated with T3 (hyperthyroid, 20 µg/100 g body weight) or 0.02% methimazole (hypothyroid, w/v) for 28 days. Heart function was evaluated by echocardiography. Measurements of mean arterial pressure (MAP), heart rate, Ca2+ transients, cardiomyocyte shortening, number of spontaneous contractions per minute and cardiolipin (CL) content were performed. Thyroid disorders were associated with changes in pacemaker activity without modifications of MAP. Thyroid disorder induced changes in left ventricular diameter which were correlated with modifications of cardiac contractility (altered cell shortening and sarcoplasmic reticulum Ca2+ content). Endocrine disorders altered cardiomyocyte relaxation (reduction in the time to 50% re-lengthening and the time to 50% Ca2+ decay). Thyroid disorder increased the number of spontaneous contractions per minute (an index of pro-arrhythmogenic behaviour). CL content was increased only in hypothyroid rats. Changes in CL content, CL composition and CL-protein interaction in mitochondria from hypothyroid animals are responsible for alterations of contractile and relaxation cardiac function. This mechanism may be not be involved in T3 -treated rats. Maintenance of euthyroidism is of crucial importance to preserve cardiac performance. An imbalance in relation to phospholipids of the mitochondrial membrane such as CL is related to defects in mitochondrial function. T3 -dependent CL signals contribute to the maintenance of mitochondrial homeostasis and involve Ca2+ handling, this pathway being more important in hypothyroidism.


Subject(s)
Cardiolipins , Hypothyroidism , Rats , Animals , Cardiolipins/metabolism , Calcium/metabolism , Rats, Sprague-Dawley , Thyroid Hormones/metabolism , Myocytes, Cardiac/metabolism , Myocardial Contraction , Sarcoplasmic Reticulum/metabolism
9.
Reproduction ; 165(3): 235-248, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36488195

ABSTRACT

In brief: The endocrine and immunological disruption induced by hyperthyroidism could alter gestation, placenta, and fetal development. This study suggests an immunological role of thyroid hormones in gestation. Abstract: Thyroid dysfunctions lead to metabolic, angiogenic, and developmental alterations at the maternal-fetal interface that cause reproductive complications. Thyroid hormones (THs) act through their nuclear receptors that interact with other steroid hormone receptors. Currently, immunological regulation by thyroid status has been characterized to a far less extent. It is well known that THs exert regulatory function on immune cells and modulate cytokine expression, but how hyperthyroidism (hyper) modulates placental immunological aspects leading to placental alterations is unknown. This work aims to throw light on how hyper modulates immunological and morphological placental aspects. Control and hyper (induced by a daily s.c. injection of T4 0.25 mg/kg) Wistar rats were mated 8 days after starting T4 treatment and euthanized on days 19 (G19) and 20 (G20) of pregnancy. We removed the placenta to perform qPCR, flow cytometry, immunohistochemistry, Western blot and histological analysis, and amniotic fluid and serum to evaluate hormone levels. We observed that hyper increases the fetal number, fetal weight, and placental weight on G19. Moreover, hyper induced an endocrine imbalance with higher serum corticosterone and changed placental morphology, specifically the basal zone and decidua. These changes were accompanied by an increased mRNA expression of glucocorticoid receptor and monocyte chemoattractant protein-1, an increased mRNA and protein expression of prolactin receptor, and an increase in CD45+ infiltration. Finally, by in vitro assays, we evidenced that TH induced immune cell activation. In summary, we demonstrated that hyper modulates immunological and morphological placental aspects and induces fetal phenotypic changes, which could be related to preterm labor observed in hyper.


Subject(s)
Hyperthyroidism , Placenta , Rats , Animals , Pregnancy , Female , Placenta/metabolism , Rats, Wistar , Thyroid Hormones/metabolism , Hyperthyroidism/metabolism , Hyperthyroidism/pathology , RNA, Messenger/metabolism , Leukocytes/metabolism
10.
Dev Dyn ; 252(2): 294-304, 2023 02.
Article in English | MEDLINE | ID: mdl-36065982

ABSTRACT

BACKGROUND: The thyroid hormones-thyroxine (T4) and 3,5,3'triiodothyronine (T3)-regulate the development of the central nervous system (CNS) in vertebrates by acting in different cell types. Although several T3 target genes have been identified in the brain, the changes in the transcriptome in response to T3 specifically in neural stem and progenitor cells (NSPCs) during the early steps of NSPCs activation and neurogenesis have not been studied in vivo. Here, we characterized the transcriptome of FACS-sorted NSPCs in response to T3 during Xenopus laevis metamorphosis. RESULTS: We identified 1252 upregulated and 726 downregulated genes after 16 hours of T3 exposure. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that T3-upregulated genes were significantly enriched in rRNA processing and maturation, protein folding, ribosome biogenesis, translation, mitochondrial function, and proteasome. These results suggest that NSPCs activation induced by T3 is characterized by an early proteome remodeling through the synthesis of the translation machinery and the degradation of proteins by the proteasome. CONCLUSION: This work provides new insights into the dynamics of activation of NPSCs in vivo in response to T3 during a critical period of neurogenesis in the metamorphosis.


Subject(s)
Neural Stem Cells , Proteasome Endopeptidase Complex , Animals , Xenopus laevis , Proteasome Endopeptidase Complex/genetics , Thyroid Hormones/metabolism , Neural Stem Cells/metabolism , Gene Expression Profiling , Metamorphosis, Biological/genetics , Gene Expression Regulation, Developmental
11.
Mol Reprod Dev ; 89(11): 526-539, 2022 11.
Article in English | MEDLINE | ID: mdl-36208482

ABSTRACT

The thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), are of vital importance for fetal development. The concentration of THs in fetal circulation varies throughout gestation and differs from the concentration in the maternal serum, indicating the presence of maternal-fetal thyroid homeostasis regulatory mechanisms in the placenta. The passage of THs from maternal circulation to fetal circulation is modulated by plasma membrane transporters, enzymes, and carrier proteins. Monocarboxylate transporter 8, iodothyronine deiodinases (DIO2 and DIO3), and transthyretin are especially involved in this maternal-fetal thyroid modulation, shown by a greater expression in the placenta. THs also play a role in placental development and as expected, abnormal variations in TH levels are associated with pregnancy complications and can result in damage to the fetus. Although new evidence regarding TH regulation during pregnancy and its effects in the mother, placenta, and fetus has been published, many aspects of these interactions are still poorly understood. The objective of this review is to provide an evidence-based update, drawn from current data, on the metabolism and transport of THs in the placenta and their vital role in the maternal-fetal relationship.


Subject(s)
Placenta , Thyroid Hormones , Female , Pregnancy , Humans , Placenta/metabolism , Thyroid Hormones/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Iodide Peroxidase/metabolism
12.
Life Sci ; 309: 120947, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36096244

ABSTRACT

Eating behavior is regulated by central and peripheral signals, which interact to modulate the response to nutrient intake. Central control is mediated by the hypothalamus through neuropeptides that activate the orexigenic and anorexigenic pathways. Energy homeostasis depends on the efficiency of these regulatory mechanisms. This neuroendocrine regulation of hunger and appetite can be modulated by nutritional sensors such as adenosine monophosphate-activated protein kinase (AMPK). Thus, this systematic review discusses the literature on correlations between AMPK and hypothalamic neuropeptides regarding control of eating behavior. Lilacs, PubMed/Medline, ScienceDirect, and Web of Science were searched for articles published from 2009 to 2021 containing combinations of the following descriptors: "eating behavior," "hypothalamus," "neuropeptide," and "AMPK." Of the 1330 articles found initially, 27 were selected after application of the inclusion and exclusion criteria. Of the selected articles, 15 reported decreased AMPK activity, due to interventions using angiotensin II infusion, fructose, glucose, cholecystokinin, leptin, or lipopolysaccharide (LPS) injection; dietary control through a low-protein diet or a high-fat diet (60 % fat); induction of hyperthyroidism; or injection of AMPK inhibitors. Seven studies showed a decrease in neuropeptide Y (NPY) through CV4 AICAR administration; fructose, glucose, leptin, or angiotensin II injections; or infusion of LPS from Escherichia coli and liver kinase B1 (LKB1) overexpression. Eleven studies reported a decrease in food consumption due to a decrease in AMPK activity and/or hypothalamic neuropeptides such as NPY. The results indicate that there is a relationship between AMPK and the control of eating behavior: a decrease in AMPK activity due to a dietary or non-dietary stimulus is associated with a consequent decrease in food intake. Furthermore, AMPK activity can be modulated by glucose, thyroid hormones, estradiol, leptin, and ghrelin.


Subject(s)
Leptin , Neuropeptides , Leptin/metabolism , Ghrelin/metabolism , Neuropeptide Y/metabolism , AMP-Activated Protein Kinases/metabolism , Lipopolysaccharides/metabolism , Angiotensin II/metabolism , Hypothalamus/metabolism , Neuropeptides/metabolism , Feeding Behavior , Eating , Cholecystokinin/metabolism , Glucose/metabolism , Thyroid Hormones/metabolism , Estradiol/metabolism , Adenosine Monophosphate/metabolism , Fructose
13.
Metab Brain Dis ; 37(8): 2735-2750, 2022 12.
Article in English | MEDLINE | ID: mdl-35951206

ABSTRACT

Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported. We investigated the effects of T3 treatment on the depression-like behavior in male transgenic 3xTg-AD mice. Animals were divided into 2 groups treated with daily intraperitoneal injections of 20 ng/g of body weight (b.w.) L-T3 (T3 group) or saline (vehicle, control group). The experimental protocol lasted 21 days, and behavioral tests were conducted on days 18-20. At the end of the experiment, the TH profile and hippocampal gene expression were evaluated. The T3-treated group significantly increased serum T3 and decreased thyroxine (T4) levels. When compared to control hippocampal samples, the T3 group exhibited attenuated glycogen synthase kinase-3 (GSK3), metalloproteinase 10 (ADAM10), amyloid-beta precursor-protein (APP), serotonin transporter (SERT), 5HT1A receptor, monocarboxylate transporter 8 (MCT8) and bone morphogenetic protein 7 (BMP-7) gene expression, whereas augmented superoxide dismutase 2 (SOD2) and Hairless gene expression. T3-treated animals also displayed reduced immobility time in both the tail suspension and forced swim tests, and in the latter presented a higher latency time compared to the control group. Therefore, our findings suggest that in an AD mouse model, T3 supplementation promotes improvements in depression-like behavior, through the modulation of the serotonergic related genes involved in the transmission mediated by 5HT1A receptors and serotonin reuptake, and attenuated disease progression.


Subject(s)
Alzheimer Disease , Triiodothyronine , Animals , Mice , Male , Triiodothyronine/pharmacology , Triiodothyronine/therapeutic use , Alzheimer Disease/metabolism , Depression/drug therapy , Glycogen Synthase Kinase 3 , Mice, Transgenic , Thyroid Hormones/metabolism , Disease Models, Animal
14.
Biol Reprod ; 106(6): 1033-1048, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35098297

ABSTRACT

Thyroid hormones (THs) are required for the growth and development of the fetus, stimulating anabolism, and oxygen consumption from the early stages of pregnancy to the period of fetal differentiation close to delivery. Maternal changes in the hypothalamic-pituitary-thyroid axis are also well known. In contrast, several open questions remain regarding the relationships between the placenta and the maternal and fetal TH systems. The exact mechanism by which the placenta participates in regulating the TH concentration in the fetus and mother and the role of TH in the placenta are still poorly studied. In this review, we aim to summarize the available data in the area and highlight significant gaps in our understanding of the ontogeny and cell-specific localization of TH transporters, TH receptors, and TH metabolic enzymes in the placenta in both human and rodent models. Significant deficiencies also exist in the knowledge of the contribution of genomic and nongenomic effects of TH on the placenta and finally, how the placenta reacts during pregnancy when the mother has thyroid disease. By addressing these key knowledge gaps, improved pregnancy outcomes and management of women with thyroid alterations may be possible.


Subject(s)
Placenta , Thyroid Hormones , Biology , Female , Fetus/metabolism , Humans , Placenta/metabolism , Pregnancy , Thyroid Hormones/metabolism
15.
J Clin Endocrinol Metab ; 106(7): 1867-1881, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33912899

ABSTRACT

CONTEXT: Iodide transport defect (ITD) (Online Mendelian Inheritance in Man No. 274400) is an uncommon cause of dyshormonogenic congenital hypothyroidism due to loss-of-function variants in the SLC5A5 gene, which encodes the sodium/iodide symporter (NIS), causing deficient iodide accumulation in thyroid follicular cells. OBJECTIVE: This work aims to determine the molecular basis of a patient's ITD clinical phenotype. METHODS: The propositus was diagnosed with dyshormonogenic congenital hypothyroidism with minimal 99mTc-pertechnetate accumulation in a eutopic thyroid gland. The propositus SLC5A5 gene was sequenced. Functional in vitro characterization of the novel NIS variant was performed. RESULTS: Sanger sequencing revealed a novel homozygous missense p.G561E NIS variant. Mechanistically, the G561E substitution reduces iodide uptake, because targeting of G561E NIS to the plasma membrane is reduced. Biochemical analyses revealed that G561E impairs the recognition of an adjacent tryptophan-acidic motif by the kinesin-1 subunit kinesin light chain 2 (KLC2), interfering with NIS maturation beyond the endoplasmic reticulum, and reducing iodide accumulation. Structural bioinformatic analysis suggests that G561E shifts the equilibrium of the unstructured tryptophan-acidic motif toward a more structured conformation unrecognizable to KLC2. Consistently, knockdown of Klc2 causes defective NIS maturation and consequently decreases iodide accumulation in rat thyroid cells. Morpholino knockdown of klc2 reduces thyroid hormone synthesis in zebrafish larvae leading to a hypothyroid state as revealed by expression profiling of key genes related to the hypothalamic-pituitary-thyroid axis. CONCLUSION: We report a novel NIS pathogenic variant associated with dyshormonogenic congenital hypothyroidism. Detailed molecular characterization of G561E NIS uncovered the significance of KLC2 in thyroid physiology.


Subject(s)
Congenital Hypothyroidism/genetics , Metabolism, Inborn Errors/genetics , Microtubule-Associated Proteins/metabolism , Symporters/genetics , Thyroid Hormones/metabolism , Animals , Humans , Infant, Newborn , Iodides/metabolism , Kinesins , Male , Mutation, Missense , Phenotype , Rats , Thyroid Gland/metabolism
16.
Mol Cell Endocrinol ; 528: 111227, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33689781

ABSTRACT

Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared. Although TG deficiency is thought to be of autosomal recessive inheritance, the introduction of massive sequencing platforms led to the identification of a variety of monoallelic TG variants (combined with mutations in other thyroid gene products) opening new questions regarding the possibility of oligogenic inheritance of the disease. In this review we discuss remarkable advances in the understanding of the TG architecture and the pathophysiology of CH associated with TG defects, providing new insights for the management of congenital disorders as well as counseling benefits for families with a history of TG abnormalities. Moreover, we summarize relevant aspects of TH synthesis within TG and offer an updated analysis of animal and cellular models of TG deficiency for pathophysiological studies of thyroid dyshormonogenesis while highlighting perspectives for new investigations. All in all, even though there has been sustained progress in understanding the role of TG in thyroid pathophysiology during the past 50 years, functional characterization of TG variants remains an important area of study for future advancement in the field.


Subject(s)
Congenital Hypothyroidism/genetics , Genetic Variation , Thyroglobulin/chemistry , Thyroglobulin/genetics , Animals , Humans , Models, Molecular , Protein Conformation , Thyroglobulin/metabolism , Thyroid Hormones/metabolism
17.
Sci Rep ; 10(1): 13914, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807826

ABSTRACT

Thyroid hormones (THs) are critical regulators of cellular processes, while changes in their levels impact all the hallmarks of cancer. Disturbed expression of type 3 deiodinase (DIO3), the main TH-inactivating enzyme, occurs in several human neoplasms and has been associated with adverse outcomes. Here, we investigated the patterns of DIO3 expression and its prognostic significance in breast cancer. DIO3 expression was evaluated by immunohistochemistry in a primary cohort of patients with breast cancer and validated in a second cohort using RNA sequencing data from the TCGA database. DNA methylation data were obtained from the same database. DIO3 expression was present in normal and tumoral breast tissue. Low levels of DIO3 expression were associated with increased mortality in the primary cohort. Accordingly, low DIO3 mRNA levels were associated with an increased risk of death in a multivariate model in the validation cohort. DNA methylation analysis revealed that the DIO3 gene promoter is hypermethylated in tumors when compared to normal tissue. In conclusion, DIO3 is expressed in normal and tumoral breast tissue, while decreased expression relates to poor overall survival in breast cancer patients. Finally, loss of DIO3 expression is associated with hypermethylation of the gene promoter and might have therapeutic implications.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/epidemiology , Iodide Peroxidase/metabolism , Thyroid Hormones/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Cohort Studies , DNA Methylation/genetics , Female , Fibroadenoma/pathology , Gene Expression Regulation, Neoplastic , Humans , Iodide Peroxidase/genetics , Kaplan-Meier Estimate , Middle Aged , Multivariate Analysis , Promoter Regions, Genetic , Proportional Hazards Models , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Survival Rate
18.
Mol Cell Endocrinol ; 518: 110972, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32777452

ABSTRACT

Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.


Subject(s)
Cardiomegaly/metabolism , Endocrine System/metabolism , Signal Transduction , Angiotensin II/metabolism , Animals , Disease Progression , Humans , Insulin/metabolism , Thyroid Hormones/metabolism
19.
J Endocrinol ; 246(3): 237-246, 2020 09.
Article in English | MEDLINE | ID: mdl-32590340

ABSTRACT

Imbalances in redox status modulate type 3 deiodinase induction in nonthyroidal illness syndrome. However, the underlying mechanisms that lead to D3 dysfunction under redox imbalance are still poorly understood. Here we evaluated D3 induction, redox homeostasis, and their interrelationships in the liver, muscle, and brain in an animal model of NTIS. Male Wistar rats were subjected to left anterior coronary artery occlusion and randomly separated into two groups and treated or not (placebo) with the antioxidant N-acetylcysteine. Sham animals were used as controls. Animals were killed 10 or 28 days post-MI induction and tissues were immediately frozen for biochemical analysis. D3 activity, protein oxidation and antioxidant defenses were measured in liver, muscle, and brain. Compared to those of the sham group, the levels of D3 expression and activity were increased in the liver (P = 0.002), muscle (P = 0.03) and brain (P = 0.01) in the placebo group. All tissues from the placebo animals showed increased carbonyl groups (P < 0.001) and diminished sulfhydryl levels (P < 0.001). Glutathione levels were decreased and glutathione disulfide levels were augmented in all examined tissues. The liver and muscle showed augmented levels of glutathione peroxidase, glutathione reductase and thioredoxin reductase activity (P = 0.001). NAC prevented all the alterations described previously. D3 dysfunction in all tissues correlates with post-MI-induced protein oxidative damage and altered antioxidant defenses. NAC treatment prevents D3 dysfunction, indicating that reversible redox-related remote D3 activation explains, at least in part, the thyroid hormone derangements of NTIS.


Subject(s)
Euthyroid Sick Syndromes/metabolism , Thyroid Hormones/metabolism , Acetylcysteine/metabolism , Animals , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Male , Oxidative Stress/physiology , Rats , Rats, Wistar , Thioredoxin-Disulfide Reductase/metabolism
20.
Thyroid ; 30(7): 1079-1090, 2020 07.
Article in English | MEDLINE | ID: mdl-32200709

ABSTRACT

Background: Sepsis can cause the nonthyroidal illness syndrome (NTIS), resulting in perturbed thyroid hormone (TH) signaling and reduced thyroxine (T4) levels. TH is a major regulator of muscle function, via its influence on mitochondria. This study aimed at evaluating the relationship between TH signaling, mitochondrial function, and the antioxidant defense system in the diaphragms of septic mice. Methods: Male C57Bl/6 mice were divided into two groups: cecal ligation and puncture (CLP) and sham. Twenty-four hours after surgery, plasma, diaphragms, and livers were collected. TH metabolism and responses were analyzed by measuring messenger RNA (mRNA) expression of Dio1 in the liver, and Thra, Thrb, Dio2, Slc16a10, and Slc16a2 (encodes MCT 10 and 8), in the diaphragm. T4 plasma levels were measured by radioimmunoassay. Damage to diaphragm mitochondria was assessed by electron microscopy and real-time polymerase chain reaction (qPCR), and function with oxygraphy. The diaphragm antioxidative defense system was examined by qPCR, analyzing superoxide dismutase (SOD) 1 (Sod1), mitochondrial superoxide dismutase (SOD 2; Sod2), extracellular superoxide dismutase (SOD 3; Sod3), glutathione peroxidase 1 (Gpx1), and catalase (Cat) expression. The effect of TH replacement was tested by treating the mice with T4 and triiodothyronine (T3) (CLP+TH) after surgery. Results: CLP mice presented reduced total plasma T4 concentrations, downregulated Dio1, and upregulated Il1b mRNA expression in the liver. CLP mice also displayed downregulated Thra, Thrb, Slc16a10, and Slc16a2 expression in the diaphragm, suggesting that TH signaling was compromised. The expression of Ppargc1a (encoding PGC1a) was downregulated, which correlated with the decrease in the number of total mitochondria, increase in the percentage of injured mitochondria, downregulation of respiratory chain complex 2 and 3 mRNA expression, and reduced maximal respiration. In addition, septic animals presented a three-fold increase in Ucp3 and G6pdh expression; downregulated Sod3, Gpx1, and Cat expression; and upregulated Sod2 expression, potentially due to elevated reactive oxygen species levels. The mitochondrial number and the percentage of injured mitochondrial were similar between sham and CLP+TH mice. Conclusions: Sepsis induced responses consistent with NTIS, resulted in mitochondrial damage and functional impairment, and modulated the expression of key antioxidant enzymes in the diaphragm. Thus, impaired diaphragm function during sepsis seems to involve altered local TH signaling, mitochondrial dysfunction, and oxidative stress defense.


Subject(s)
Diaphragm/metabolism , Mitochondria/metabolism , Sepsis/metabolism , Signal Transduction/physiology , Thyroid Hormones/metabolism , Animals , Disease Models, Animal , Gene Expression Regulation , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Liver/metabolism , Mice , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL