Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Nutr Rep ; 13(2): 126-151, 2024 06.
Article in English | MEDLINE | ID: mdl-38483752

ABSTRACT

PURPOSE OF REVIEW: Colorectal cancer is the second deadliest cancer in the world, and its prevalence has been increasing alarmingly in recent years. After researchers discovered the existence of dysbiosis in colorectal cancer, they considered the use of probiotics in the treatment of colorectal cancer. However, for various reasons, including the low safety profile of probiotics in susceptible and immunocompromised patient5s, and the risk of developing antibiotic resistance, researchers have shifted their focus to non-living cells, their components, and metabolites. This review aims to comprehensively evaluate the literature on the effects of diet, microbiota, and postbiotics on colorectal cancer and the future of postbiotics. RECENT FINDINGS: The link between diet, gut microbiota, and colorectal cancer has been established primarily as a relationship rather than a cause-effect relationship. The gut microbiota can convert gastrointestinal tract and dietary factors into either onco-metabolites or tumor suppressor metabolites. There is serious dysbiosis in the microbiota in colorectal cancer. Postbiotics appear to be promising agents in the prevention and treatment of colorectal cancer. It has been shown that various postbiotics can selectively induce apoptosis in CRC, inhibit cell proliferation, growth, invasion, and migration, modulate the immune system, suppress carcinogenic signaling pathways, maintain intestinal epithelial integrity, and have a synergistic effect with chemotherapy drugs. However, it is also reported that some postbiotics are ineffective and may be risky in terms of safety profile in some patients. Many issues need to be researched about postbiotics. Large-scale, randomized, double-blind clinical studies are needed.


Subject(s)
Colorectal Neoplasms , Diet , Dysbiosis , Gastrointestinal Microbiome , Probiotics , Humans , Colorectal Neoplasms/microbiology , Animals
2.
Food Res Int ; 111: 574-581, 2018 09.
Article in English | MEDLINE | ID: mdl-30007720

ABSTRACT

Food-derived opioid peptides that are released from proteins by digestion, fermentation, or food production processes lead to several health problems. The opioids are generally resistant to hydrolyze by proteases, except the dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) enzyme, because of proline amino acid. ß-casomorphin (BCM) from milk casein, gluteomorphin (GM) from wheat gluten, and soymorphin (SM) from the soybean ß-conglycinin ß-subunit are natural substrates of DPPIV because of their amino acid sequences and proline location. In the present study, DPPIV from Lactococcus lactis spp. lactis was purified and characterized by mass spectrometry. Purified DPPIV was added to standard BCM, GM, and SM, and hydrolysis percentages of morphins were measured by HPLC analysis. The results indicated that DPPIV enzyme hydrolyzed food-derived opioids (from 0.1 mM to 2 mM), BCM (33.42% for 2 mM), SM (83.81% for 2 mM), and GM (45.73% for 2 mM) in vitro. Hydrolysis percentages of SM were considerably higher than the same concentrations with BCM and GM. For dietary supplements to be promising for reducing the adverse effects of food derived opioids, this must be supported by in vivo studies of DPPIV use in the human body.


Subject(s)
Analgesics, Opioid/chemistry , Dipeptidyl Peptidase 4/metabolism , Lactococcus lactis/enzymology , Animals , Antigens, Plant/chemistry , Caseins/chemistry , Endorphins/chemistry , Globulins/chemistry , Glutens/chemistry , Hydrolysis , Molecular Weight , Morphine Derivatives/chemistry , Peptide Fragments/chemistry , Seed Storage Proteins/chemistry , Soybean Proteins/chemistry
3.
Ultrason Sonochem ; 29: 163-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26584994

ABSTRACT

X-prolyl dipeptidyl aminopeptidase (PepX) is an intracellular enzyme from the Gram-positive bacterium Lactococcus lactis spp. lactis NRRL B-1821, and it has commercial importance. The objective of this study was to compare the effects of several cell disruption methods on the activity of PepX. Statistical optimization methods were performed for two cavitation methods, hydrodynamic (high-pressure homogenization) and acoustic (sonication), to determine the more appropriate disruption method. Two level factorial design (2FI), with the parameters of number of cycles and pressure, and Box-Behnken design (BBD), with the parameters of cycle, sonication time, and power, were used for the optimization of the high-pressure homogenization and sonication methods, respectively. In addition, disruption methods, consisting of lysozyme, bead milling, heat treatment, freeze-thawing, liquid nitrogen, ethylenediaminetetraacetic acid (EDTA), Triton-X, sodium dodecyl sulfate (SDS), chloroform, and antibiotics, were performed and compared with the high-pressure homogenization and sonication methods. The optimized values of high-pressure homogenization were one cycle at 130 MPa providing activity of 114.47 mU ml(-1), while sonication afforded an activity of 145.09 mU ml(-1) at 28 min with 91% power and three cycles. In conclusion, sonication was the more effective disruption method, and its optimal operation parameters were manifested for the release of intracellular enzyme from a L. lactis spp. lactis strain, which is a Gram-positive bacterium.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Intracellular Space/enzymology , Lactococcus lactis/cytology , Statistics as Topic , Hydrodynamics , Lactococcus lactis/enzymology , Mechanical Phenomena , Pressure , Sonication
4.
Cytotechnology ; 66(1): 159-68, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23715645

ABSTRACT

Human dipeptidylpeptidase IV (hDPPIV) is an enzyme that is in hydrolase class and has various roles in different parts of human body. Its deficiency may cause some disorders in the gastrointestinal, neurologic, endocrinological and immunological systems of humans. In the present study, hDPPIV enzyme was expressed on Spodoptera frugiperda (Sf9) cell lines as a host cell, and the expression of hDPPIV was obtained by a baculoviral expression system. The enzyme production, optimum multiplicity of infection, optimum transfection time, infected and uninfected cell size and cell behavior during transfection were also determined. For maximum hDPPIV (269 mU mL(-1)) enzyme, optimum multiplicity of infection (MOI) and time were 0.1 and 72 h, respectively. The size of infected cells increased significantly (P < 0.001) after 24 h post infection. The results indicated that Sf9 cell line was applicable to the large scale for hDPPIV expression by using optimized parameters (infection time and MOI) because of its high productivity (4.03 mU m L(-1) h(-1)).

SELECTION OF CITATIONS
SEARCH DETAIL