Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124583, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850611

ABSTRACT

A historical sketch of the MCD (magnetic circular dichroism) spectroscopy is reported in its experimental and theoretical aspects. MCPL (magnetic circularly polarized luminescence) is also considered. The main studies are presented encompassing porphyrinoid systems, aggregates and materials, as well as simple organic molecules useful for the advancement of the interpretation. The MCD of chiral systems is discussed with special attention to new studies of natural products with potential pharmaceutical valence, including Amaryllidaceae alkaloids and related isocarbostyrils. Finally, the vibrational form of MCD, called MVCD, which is recorded in the IR part of the spectrum is also discussed. A final brief note on perspectives is given.

2.
Chemphyschem ; : e202400543, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881499

ABSTRACT

(R)-(-)-Mellein, (3R,4R)-4-hydroxymellein and (3R,4S)-4-hydroxymellein obtained from fungi, i.e. from Diplodia globulosa, were investigated as a class of natural products presenting ESIPT (excited state intramolecular proton transfer) phenomenon, through fluorescence and CPL (circularly polarized luminescence). The study was preceded by the assessment of the absolute configuration through ECD and VCD (electronic and vibrational circular dichroism) spectroscopies in addition to NMR spectra. It is found that ESIPT takes place in these systems very rapidly, and no dual fluorescence has been observed. The experimental study is backed up by TD-DFT calculations of ECD and CPL spectra, plus MD dynamics to follow proton transfer in the excited state and careful analysis of the puckering dynamics of the lactone ring. Deprotonated forms of the three compounds were also investigated by the same chiroptical experimental and theoretical methods, showing how one can find in natural compounds not only biological activity but also biologically compatible sensing probes.

3.
Angew Chem Int Ed Engl ; : e202404849, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818567

ABSTRACT

We present the inaugural synthesis of a chiral teropyrene achieved through a four-fold alkyne benzannulation catalyzed by InCl3, resulting in good yields. The product underwent thorough characterization using FT-Raman and FT-IR spectroscopies, demonstrating a close agreement with calculated spectra. X-ray crystallographic analysis unveiled a notable twist in the molecule's backbone, with an end-to-end twist angle of 51°, consistent with computational predictions. Experimentally determined enantiomeric inversion barriers revealed a significant energy barrier of 23 kcal/mol, facilitating the isolation of enantiomers for analysis via circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopies. These findings mark significant strides in the synthesis and characterization of chiral teropyrenes, offering insights into their structural and spectroscopic properties.

4.
Chirality ; 36(3): e23649, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409881

ABSTRACT

Five diastereomers of ruthenium(II) complexes based on quinolinophaneoxazoline ligands were investigated by vibrational circular dichroism (VCD) in the mid-IR and CH stretching regions. Diastereomers differ in three sources of chirality: the planar chirality of the quinolinophane moiety, the central chirality of an asymmetric carbon atom of the oxazoline ring, and the chirality of the ruthenium atom. VCD, allied to DFT calculations, has been found to be effective in disentangling the various forms of chirality. In particular, a VCD band is identified in the CH stretching region directly connected to the chirality of the metal. The analysis of the calculated VCD spectra is carried out by partitioning the complexes into fragments. The anharmonic analysis is also performed with a recently proposed reduced-dimensionality approach: such treatment is particularly important when examining spectroscopic regions highly perturbed by resonances, like the CH stretching region.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123969, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38330757

ABSTRACT

Vibrational analysis plays a crucial role in the investigation of molecular systems. Though methodologies like second-order vibrational perturbation theory (VPT2) have paved the way to more accurate simulations, the computational cost remains a difficult barrier to overcome when the molecular size increases. Building upon recent advances in the identification of resonances, we propose an approach making anharmonic simulations possible for large-size systems, typically unreachable by standard means. This relies on the fact that, often, only portions of the whole spectra are of actual interest. Therefore, the anharmonic corrections can be included selectively on subsets of normal modes directly related to the regions of interest. Starting from the VPT2 equations, we evaluate rigorously and systematically the impact of the truncated anharmonic treatment onto simulations. The limit and feasibility of the reduced-dimensionality approach are detailed, starting on a smaller model system. The methodology is then challenged on the IR absorption and vibrational circular dichroism spectra of an organometallic complex in three different spectral ranges.

6.
Front Pharmacol ; 15: 1309766, 2024.
Article in English | MEDLINE | ID: mdl-38370479

ABSTRACT

The number of patients affected by neurodegenerative diseases is increasing worldwide, and no effective treatments have been developed yet. Although precision medicine could represent a powerful tool, it remains a challenge due to the high variability among patients. To identify molecules acting with innovative mechanisms of action, we performed a computational investigation using SAFAN technology, focusing specifically on HuD. This target belongs to the human embryonic lethal abnormal visual-like (ELAV) proteins and plays a key role in neuronal plasticity and differentiation. The results highlighted that the molecule able to bind the selected target was (R)-aloesaponol-III-8-methyl ether [(R)-ASME], a metabolite extracted from Eremurus persicus. Notably, this molecule is a TNF-α inhibitor, a cytokine involved in neuroinflammation. To obtain a suitable amount of (R)-ASME to confirm its activity on HuD, we optimized the extraction procedure. Together with ASME, another related metabolite, germichrysone, was isolated. Both ASME and germichrysone underwent biological investigation, but only ASME confirmed its ability to bind HuD. Given the multifactorial nature of neurodegenerative diseases, we decided to investigate ASME as a proteasome activator, being molecules endowed with this kind of activity potentially able to counteract aggregations of dysregulated proteins. ASME was able to activate the considered target both in enzymatic and cellular assays. Therefore, ASME may be considered a promising hit in the fight against neurodegenerative diseases.

7.
Phys Chem Chem Phys ; 25(34): 22700-22710, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37605892

ABSTRACT

Circularly polarized luminescence (CPL) is increasingly gaining interest not only for its applicative potentialities but also for providing an understanding of the excited state properties of chiral molecules. However, applications of CPL are mainly in the field of materials science: special organic molecules and polymers, metal (lanthanide) complexes, and organic dyes are actively and intensely studied. So far natural compounds have not been investigated much. We fill the gap here by measuring circular dichroism (CD) and CPL of lycorine and narciclasine, the most abundant known alkaloid and isocarbostyril from Amaryllidaceae, which exhibit a large spectrum of biological activities and are promising anticancer compounds. Dual fluorescence detection in narciclasine led us to unveil an occurring excited-state intramolecular proton transfer (ESIPT) process, this mechanism well accounts for the Stokes shift and CPL spectra observed in narciclasine. The same molecule is interesting also as a pH chiroptical switch. Both in absorption and emission, lycorine and narciclasine are also studied computationally via density functional theory (DFT) calculations further shedding light on their properties.

8.
Chem Commun (Camb) ; 59(44): 6714-6717, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37191071

ABSTRACT

The use of chiroptical techniques in combination with stereodynamic probes is becoming one of the leading strategies for chiral sensing. While in most of the reported studies circular dichroism (CD) is the adopted spectroscopic technique, examples regarding the use of vibrational CD (VCD), circularly polarized luminescence (CPL), and Raman optical activity (ROA) are emerging as innovative tools. In this communication, an anthracene-decorated tris(2-pyridylmethyl)amine zinc complex (TPMA) is reported for its capability to act as a chiral sensor using either CD or fluorescence detected circular dichroism (FDCD). The latter technique offers the unique possibility to determine the enantiomeric excess of a series of carboxylic acids at sensor concentrations down to 0.1 µM. Limitations and possibilities opened by the use of this methodology, in particular regarding the specificity of the probe in the presence of another contaminant, are discussed.

9.
Molecules ; 28(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36985535

ABSTRACT

In this work we review research activities on a few of the most relevant structural aspects of bilirubin (BR) and biliverdin (BV). Special attention is paid to the exocyclic C=C bonds being in mostly Z rather than E configurations, and to the overall conformation being essentially different for BR and BV due to the presence or absence of the double C=C bond at C-10. In both cases, racemic mixtures of each compound of either M or P configuration are present in achiral solutions; however, imbalance between the two configurations may be easily achieved. In particular, results based on chiroptical spectroscopies, both electronic and vibrational circular dichroism (ECD and VCD) methods, are presented for chirally derivatized BR and BV molecules. Finally, we review deracemization experiments monitored with ECD data from our lab for BR in the presence of serum albumin and anesthetic compounds.


Subject(s)
Bilirubin , Biliverdine , Biliverdine/chemistry , Circular Dichroism , Molecular Conformation , Vibration , Stereoisomerism
10.
Dalton Trans ; 51(43): 16453-16464, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36194143

ABSTRACT

The chiral Ni(II) and Pd(II) complexes of [6]helicene thioethyl porphyrazine have been synthesized and their spectroscopic, electrochemical, and chiroptical properties have been investigated by experimental and computational analyses. In these compounds, the tetrapyrrole macrocycle is ß-substituted with an inherently chiral extended aromatic moiety potentially suitable to establish attractive π-π interactions with nanocarbons and endowed with helical chirality, both features providing interesting properties for optoelectronic applications. Experimental and density functional theory computational analyses highlight the presence of HOMO-LUMO charge-transfer transitions between the helicene moiety and the porphyrazine macrocycle. These compounds behave as mono-substituted push-pull systems without any typical electron-withdrawing or electron-donating groups and thus appear promising for optoelectronics. The enantiomers of the Ni(II) complex have been separated by chiral HPLC and their absolute configuration has been established by density functional theory computational analysis of electronic circular dichroism spectra. The magnetic circular dichroism spectrum of this complex has also been recorded providing better insight into its electronic structure.

11.
J Phys Chem A ; 126(38): 6719-6733, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36126273

ABSTRACT

Vibrational circular dichroism (VCD) spectra and the corresponding IR spectra of the chiral isomers of methyloxirane and of methylthiirane have been reinvestigated, both experimentally and theoretically, with particular attention to accounting for anharmonic corrections, as calculated by the GVPT2 approach. De novo recorded VCD spectra in the near IR (NIR) range regarding CH-stretching overtone transitions, together with the corresponding NIR absorption spectra, were also considered and accounted for, both with the GVPT2 and with the local mode approaches. Comparison of the two methods has permitted us to better describe the nature of active "anharmonic" modes in the two molecules and the role of mechanical and electrical anharmonicity in determining the intensities of VCD and IR/NIR data. Finally, two nonstandard IR/NIR regions have been investigated: the first one about ≈2000 cm-1, involving mostly two-quanta bending mode transitions, the second one between 7000 and 7500 cm-1 involving three-quanta transitions containing CH-stretching overtones and HCC/HCH bending modes.

12.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36014353

ABSTRACT

A novel α-tetrazole-substituted 1,1'-binaphthylazepine chiral catalyst has been synthesized and its absolute configuration has been determined by DFT computational analysis of the vibrational circular dichroism (VCD) spectrum of its precursor. The VCD analysis, carried out through the model averaging method, allowed to assign the absolute configuration of a benzylic stereocenter in the presence of a chiral binaphthyl moiety. The 1,1'-binaphthylazepine tetrazole and the nitrile its immediate synthetic precursor, have been preliminarily tested as chiral organocatalysts in the asymmetric intramolecular oxa-Michael cyclization of 2-hydroxy chalcones for the synthesis of chiral flavanones obtaining low enantioselectivity.


Subject(s)
Tetrazoles , Circular Dichroism , Molecular Conformation , Stereoisomerism
13.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208947

ABSTRACT

We have developed an efficient chemical resolution of racemic hydroxy substituted dithia-aza[4]helicenes (DTA[4]H) 1(OH) using enantiopure acids as resolving agents. The better diastereomeric separation was achieved on esters prepared with (1S)-(-)-camphanic acid. Subsequent simple manipulations produced highly optically pure (≥ 99% enantiomeric excess) (P) and (M)-1(OH) in good yields. The role of the position where the chiral auxiliary is inserted (cape- vs. bay-zone) and the structure of the enantiopure acid used on successful resolution are discussed.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 121010, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35180485

ABSTRACT

Single enantiomers of three 1,2-substituted ferrocene derivatives, i.e. 1-methoxymethyl-2-hydroxymethylferrocene (1), 1-formyl-2-hydroxymethylferrocene (2) and 1-iodo-2-hydroxymethylferrocene (3), sharing the common hydroxymethyl substituent and the presence of planar chirality only, were investigated for their spectroscopic (IR and UV) and chiroptical (VCD and ECD) properties. Both enantiomers of 1 were obtained for the first time in optically pure form by lipase-catalyzed kinetic resolution of the corresponding racemate (±)-1 and separately converted into formyl derivatives (+)-2 and (-)-2. The experimental spectroscopic and chiroptical data were compared with DFT calculated spectra and excellent correspondence was found for all compounds, allowing one to confirm the previously assigned absolute configurations. The common features in the VCD spectra of a doublet between 940 and 965 cm-1 and the short-wavelength (about 200 nm) doublet and the longest wavelength band in the ECD spectra were analyzed to test whether they may be taken as markers of the absolute configuration (AC). The predominance of conformers with intramolecular hydrogen bond for the first two investigated compounds is predicted by conformational analysis and also confirmed by NMR.


Subject(s)
Circular Dichroism , Magnetic Resonance Spectroscopy , Metallocenes , Molecular Conformation , Stereoisomerism
15.
Chem Commun (Camb) ; 58(13): 2152-2155, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35059695

ABSTRACT

Confinement within supramolecular systems is the leading technology to finely tune guest functional properties. In this communication we report the synthesis of a chiral supramolecular cage able to bias the helicity of a perfluorinated carbon chain hosted within the cage. We monitor the phenomenon of chiral induction by Vibrational Circular Dichroism (VCD) experiments complemented by DFT calculations over the possible conformers.

16.
Biomolecules ; 11(12)2021 12 18.
Article in English | MEDLINE | ID: mdl-34944545

ABSTRACT

9-Hydroxynerolidol, 9-oxonerolidol, and chiliadenol B are three farnesane-type sesquiterpenoids isolated from Chiliadenus lopadusanus that have shown an interesting activity against human pathogens as Gram+ and Gram- bacteria resistant to antibiotics. However, the absolute configuration (AC) of these interesting sesquiterpenes has not been assigned so far. Vibrational and electronic circular dichroism spectra have been recorded and correlations are pointed out for the three compounds. Density functional theory (DFT) calculations are used in conjunction with Mosher's method of investigation to assign AC. Statistical analysis is considered to quantitatively define the choice of AC from VCD spectra.


Subject(s)
Asteraceae/chemistry , Sesquiterpenes/chemistry , Circular Dichroism , Density Functional Theory , Molecular Structure , Plant Extracts/chemistry , Stereoisomerism , Vibration
17.
ACS Omega ; 6(40): 26659-26671, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34661019

ABSTRACT

Two triarylcorrole complexes, (hydroxy)[5,10,15-tritolylcorrolato]silicon-(TTC)Si(OH) and (dihydroxy)[5,10,15-tritolylcorrolato]phosphorous-(TTC)P(OH) 2 , have been investigated by magnetic circular dichroism (MCD) and magnetic circularly polarized luminescence (MCPL). The spectroscopic investigations have been combined with explicit calculation of MCD response through time-dependent density functional theory (TD-DFT) formalism. This has allowed us to better define the role of molecular orbitals in the transitions associated with the Soret and Q bands. Besides and more importantly, MCD has made it possible to follow the titration process of (TTC)Si(OH) in dimethyl sulfoxide (DMSO) solution with NaF and of (TTC)P(OH) 2 in dichloromethane solution with alcohols in a complementary and, we dare say, more sensitive way with respect to absorption and fluorescence data. Finally, the MCPL spectra and the ancillary TD-DFT calculations have allowed us to characterize the excited state of (TTC)Si(OH).

18.
Phys Chem Chem Phys ; 23(36): 20138-20151, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34551042

ABSTRACT

A series of six optically active derivatives of the bile pigment biliverdin, namely (ßS,ß'S)-dimethylmesobiliverdin-XIIIα, cyclic esters of linear diols [HO(CH2)nOH] where n = 1-6, have been investigated by vibrational circular dichroism (VCD) and density functional theory (DFT) calculations. The results were correlated with the length (n) of the diester belt, the verdin helicity and an M ⇄ P conformational equilibrium - as previously shown by electronic circular dichroism (ECD). Furthermore, ECD spectra have been found to be quite sensitive to solvent nature and pH. TD-DFT calculations of the protonated/deprotonated verdins with n = 1 and 2 diester belts respectively have allowed one, moreover, to explain the spectroscopic data in terms of a change in the M ⇄ P equilibrium. Finally, the set of investigated compounds, together with other chirally functionalized "non-belted" biliverdin analogs, has also been found to be sensitive to the presence of metal ions, with which the verdins chelate. On the basis of ECD and VCD data, we propose that the spectroscopic changes observed are consistent with self-association (dimerization) of the verdin molecules promoted by the metal cations, as bolstered by DFT calculations, and for which a dimerization constant of 73 000 M-1 is evaluated. We envision the use of current chiroptical spectroscopies in connection with chiral biliverdin derivatives as natural sensors or probes of the micro-environmental conditions, such as pH or the presence of metal ions.

19.
J Phys Chem B ; 125(1): 264-280, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33351631

ABSTRACT

UV-vis absorption and magnetic circular dichroism (MCD) spectra of octakis thioethyl "free base" porphyrazine H2OESPz and its metal complexes MOESPz (M = Mg, Zn, Ni, Pd, Cu), as well as of [MnOESPz(SH)] were recorded. In the last case, MCD proved to have quite good sensitivity to the coordination of this complex with 1-methylimidazole (1-mim) in benzene. Time-dependent density functional theory (TDDFT) calculations were carried out for the considered porphyrazine complexes and showed good performance on comparing with MCD and UV-vis experimental spectra, even in the open-shell Cu and Mn cases. Calculations accounted for the red shift observed in the thioalkyl compounds and allowed us to reveal the role of sulfur atoms in spectroscopically relevant molecular orbitals and to highlight the importance of the conformations of the thioethyl external groups. Calculated MCD spectra of [MnOESPz(SH)] confirm the Mn(III) → Mn(II) redox process, which leads to the [Mn(OESPz)(1-mim)2] species, and the relevance of the spin state for MCD is revealed.

20.
J Phys Chem B ; 124(22): 4512-4526, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32396357

ABSTRACT

Raman and Raman optical activity (ROA), IR, and vibrational circular dichroism (VCD) spectra of (R)- and (S)-pantolactone have been recorded in three solvents. ROA has been employed on water and DMSO solutions, VCD on DMSO and CCl4 solutions. In the last solvent, monomer-dimer equilibrium is present. Due to the low conformational flexibility of the isolated molecule and to the possibility of aggregation, this compound has been used here to test different protocols for computation of the spectroscopic responses taking into account solvent effects. Molecular dynamics (MD) simulations have been carried out together with statistical clustering methods based on collective variables to extract the structures needed to calculate the spectra. Quantum mechanical DFT calculations based on PCM are compared with approaches based on different representations of the solvent shell (MM or QM level). Appropriate treatment of the solvent permits obtaining of good band-shapes, with the added advantage that the MD analysis allows one to take into account flexibility of dimeric structures justifying the broadness of observed bands and the absence of intense VCD couplets in the carbonyl and OH stretching regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...