Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Macromolecules ; 56(21): 8806-8812, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024157

ABSTRACT

The synthetic utility of heterotelechelic polydimethylsiloxane (PDMS) derivatives is limited due to challenges in preparing materials with high chain-end fidelity. In this study, anionic ring-opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) monomers using a specifically designed silyl hydride (Si-H)-based initiator provides a versatile approach toward a library of heterotelechelic PDMS polymers. A novel initiator, where the Si-H terminal group is connected to a C atom (H-Si-C) and not an O atom (H-Si-O) as in traditional systems, suppresses intermolecular transfer of the Si-H group, leading to heterotelechelic PDMS derivatives with a high degree of control over chain ends. In situ termination of the D3 propagating chain end with commercially available chlorosilanes (alkyl chlorides, methacrylates, and norbornenes) yields an array of chain-end-functionalized PDMS derivatives. This diversity can be further increased by hydrosilylation with functionalized alkenes (alcohols, esters, and epoxides) to generate a library of heterotelechelic PDMS polymers. Due to the living nature of ring-opening polymerization and efficient initiation, narrow-dispersity (D < 1.2) polymers spanning a wide range of molar masses (2-11 kg mol-1) were synthesized. With facile access to α-Si-H and ω-norbornene functionalized PDMS macromonomers (H-PDMS-Nb), the synthesis of well-defined supersoft (G' = 30 kPa) PDMS bottlebrush networks, which are difficult to prepare using established strategies, was demonstrated.

2.
Mol Pharm ; 18(3): 1386-1396, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33591187

ABSTRACT

Chemokines and chemokine receptors play an important role in the initiation and progression of atherosclerosis by mediating the trafficking of inflammatory cells. Chemokine receptor 5 (CCR5) has major implications in promoting the development of plaques to advanced stage and related vulnerability. CCR5 antagonist has demonstrated the effective inhibition of atherosclerotic progression in mice, making it a potential biomarker for atherosclerosis management. To accurately determine CCR5 in vivo, we synthesized CCR5 targeted Comb nanoparticles through a modular design and construction strategy with control over the physiochemical properties and functionalization of CCR5 targeting peptide d-Ala-peptide T-amide (DAPTA-Comb). In vivo pharmacokinetic evaluation through 64Cu radiolabeling showed extended blood circulation of 64Cu-DAPTA-Combs conjugated with 10%, 25%, and 40% DAPTA. The different organ distribution profiles of the three nanoparticles demonstrated the effect of DAPTA on not only physicochemical properties but also targeting efficiency. In vivo positron emission tomography/computed tomography (PET/CT) imaging in an apolipoprotein E knockout mouse atherosclerosis model (ApoE-/-) showed that the three 64Cu-DAPTA-Combs could sensitively and specifically detect CCR5 along the progression of atherosclerotic lesions. In an ApoE-encoding adenoviral vector (AAV) induced plaque regression ApoE-/- mouse model, decreased monocyte recruitment, CD68+ macrophages, CCR5 expression, and plaque size were all associated with reduced PET signals, which not only further confirmed the targeting efficiency of 64Cu-DAPTA-Combs but also highlighted the potential of these targeted nanoparticles for atherosclerosis imaging. Moreover, the up-regulation of CCR5 and colocalization with CD68+ macrophages in the necrotic core of ex vivo human plaque specimens warrant further investigation for atherosclerosis prognosis.


Subject(s)
Atherosclerosis/diagnostic imaging , Atherosclerosis/metabolism , Nanoparticles/administration & dosage , Receptors, CCR5/metabolism , Alanine/metabolism , Animals , Apolipoproteins E/metabolism , Chemokines/metabolism , Copper Radioisotopes/metabolism , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/metabolism , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/metabolism
3.
J Am Chem Soc ; 142(4): 1667-1672, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31909990

ABSTRACT

DNA-mediated assembly of inorganic particles has demonstrated to be a powerful approach for preparing nanomaterials with a range of interesting optical and electrical properties. Building on this inspiration, we describe a generalizable gram-scale method to assemble nanoparticles through the formation of poly(methyl methacrylate) (PMMA) triple-helices. In this work, alkene-terminated syndiotactic (st-) and isotactic (it-) PMMA polymers were prepared and subsequently functionalized to afford nanoparticle ligands. Nanoparticles with complementary st- and it-PMMA ligands could then be spontaneously assembled upon mixing at room temperature. This process was robust and fully reversible through multiple heating and cooling cycles. The versatility of PMMA stereocomplexation was highlighted by assembling hybrid structures composed of nanoparticles of different compositions (e.g., Au and quantum dots) and shapes (e.g., spheres and rods). These initial demonstrations of nanoparticle self-assembly from inexpensive PMMA-based materials present an attractive alternative to DNA-based nanomaterials.

4.
J Am Chem Soc ; 141(6): 2630-2635, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30721057

ABSTRACT

Inspired by nanotechnologies based on DNA strand displacement, herein we demonstrate that synthetic helical strand exchange can be achieved through tuning of poly(methyl methacrylate) (PMMA) triple-helix stereocomplexes. To evaluate the utility and robustness of helical strand exchange, stereoregular PMMA/polyethylene glycol (PEG) block copolymers capable of undergoing crystallization driven self-assembly via stereocomplex formation were prepared. Micelles with spherical or wormlike morphologies were formed by varying the molecular weight composition of the assembling components. Significantly, PMMA strand exchange was demonstrated and utilized to reversibly switch the micelles between different morphologies. This concept of strand exchange with PMMA-based triple-helix stereocomplexes offers new opportunities to program dynamic behaviors of polymeric materials, leading to scalable synthesis of "smart" nanosystems.


Subject(s)
DNA/chemistry , Polymethyl Methacrylate/chemistry , Models, Molecular , Nucleic Acid Conformation , Stereoisomerism
5.
J Am Chem Soc ; 140(5): 1945-1951, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29377680

ABSTRACT

The triple-helix stereocomplex of poly(methyl methacrylate) (PMMA) is a unique example of a multistranded synthetic helix that has significant utility and promise in materials science and nanotechnology. To gain a fundamental understanding of the underlying assembly process, discrete stereoregular oligomer libraries were prepared by combining stereospecific polymerization techniques with automated flash chromatography purification. Stereocomplex assembly of these discrete building blocks enabled the identification of (1) the minimum degree of polymerization required for the stereocomplex formation and (2) the dependence of the helix crystallization mode on the length of assembling precursors. More significantly, our experiments resolved binding selectivity between helical strands with similar molecular weights. This presents new opportunities for the development of next-generation polymeric materials based on a triple-helix motif.


Subject(s)
Polymethyl Methacrylate/chemistry , Binding Sites , Molecular Structure , Molecular Weight , Stereoisomerism
6.
J Am Chem Soc ; 138(19): 6306-10, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27152711

ABSTRACT

A versatile strategy is reported for the multigram synthesis of discrete oligomers from commercially available monomer families, e.g., acrylates, styrenics, and siloxanes. Central to this strategy is the identification of reproducible procedures for the separation of oligomer mixtures using automated flash chromatography systems with the effectiveness of this approach demonstrated through the multigram preparation of discrete oligomer libraries (D = 1.0). Synthetic availability, coupled with accurate structural control, allows these functional building blocks to be harnessed for both fundamental studies as well as targeted technological applications.


Subject(s)
Polymers/chemical synthesis , Chromatography/methods , Chromatography, Gel , Chromatography, Thin Layer , Polymers/isolation & purification , Reproducibility of Results , Small Molecule Libraries , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL