Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Arch Pharm (Weinheim) ; 357(3): e2300599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100160

ABSTRACT

Humanity is currently facing various diseases with significant mortality rates, particularly those associated with malignancies. Numerous enzymes and proteins have been identified as highly promising targets for the treatment of cancer. The poly(ADP-ribose) polymerases (PARPs) family comprises 17 members which are essential in DNA damage repair, allowing the survival of cancer cells. Unlike other PARP family members, PARP-1 and, to a lesser extent, PARP-2 show more than 90% activity in response to DNA damage. PARP-1 levels were shown to be elevated in various tumor cells, including breast, lung, ovarian, and prostate cancer and melanomas. Accordingly, novel series of phthalimide-tethered isatins (6a-n, 10a-e, and 11a-e) were synthesized as potential PARP-1 inhibitors endowed with anticancer activity. All the synthesized molecules were assessed against PARP-1, where compounds 6f and 10d showed nanomolar activities with IC50 = 15.56 ± 2.85 and 13.65 ± 1.42 nM, respectively. Also, the assessment of the antiproliferative effects of the synthesized isatins was conducted on four cancer cell lines: leukemia (K-562), liver (HepG2), and breast (MCF-7 and HCC1937) cancers. Superiorly, compounds 6f and 10d demonstrated submicromolar IC50 values against breast cancer MCF-7 (IC50 = 0.92 ± 0.18 and 0.67 ± 0.12 µM, respectively) and HCC1937 (IC50 = 0.88 ± 0.52 and 0.53 ± 0.11 µM, respectively) cell lines. In addition, compounds 6f and 10d induced arrest in the G2/M phase of the cell cycle as compared to untreated cells. Finally, in silico studies, including docking and molecular dynamic simulations, were performed to justify the biological results.


Subject(s)
Isatin , Poly(ADP-ribose) Polymerase Inhibitors , Male , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Structure-Activity Relationship , Phthalimides/pharmacology , Cell Line, Tumor
2.
Sci Rep ; 13(1): 11346, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443185

ABSTRACT

In the current study, we designed and synthesized a series of new quinoline derivatives 10a-p as antiproliferative agents targeting cancer through inhibition of VEGFR-2. Preliminary molecular docking to assess the interactions of the designed derivatives with the binding site of VEGFR-2 (PDB code: 4ASD) displayed binding poses and interactions comparable to sorafenib. The synthesized compounds exhibited VEGFR-2 inhibitory activity with IC50 ranging from 36 nM to 2.23 µM compared to sorafenib (IC50 = 45 nM), where derivative 10i was the most potent. Additionally, the synthesized derivatives were evaluated in vitro for their cytotoxic activity against HepG2 cancer cell line. Seven compounds 10a, 10c, 10d, 10e, 10i, 10n and 10o (IC50 = 4.60, 4.14, 1.07, 0.88, 1.60, 2.88 and 2.76 µM respectively) displayed better antiproliferative activity than sorafenib (IC50 = 8.38 µM). Compound 10i was tested against Transformed Human Liver Epithelial-2 normal cell line (THLE-2) to evaluate its selective cytotoxicity. Furthermore, 10i, as a potent representative of the series, was assayed for its apoptotic activity and cell cycle kinetics' influence on HepG2, its effects on the gene expression of VEGFR-2, and protein expression of the apoptotic markers Caspase-7 and Bax. Compound 10i proved to have a potential role in apoptosis by causing significant increase in the early and late apoptotic quartiles, a remarkable activity in elevating the relative protein expression of Bax and Caspase-7 and a significant reduction of VEGFR-2 gene expression. Collectively, the obtained results indicate that compound 10i has a promising potential as a lead compound for the development of new anticancer agents.


Subject(s)
Antineoplastic Agents , Quinolones , Humans , Molecular Structure , Structure-Activity Relationship , Caspase 7/metabolism , Sorafenib/pharmacology , Quinolones/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Molecular Docking Simulation , bcl-2-Associated X Protein , Protein Kinase Inhibitors/pharmacology , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Design
3.
Bioorg Chem ; 139: 106724, 2023 10.
Article in English | MEDLINE | ID: mdl-37451146

ABSTRACT

Fragment merging approach was applied for the design of thiazole/thiazolidinone clubbed pyrazoline derivatives 5a-e, 6a-c, 7 and 10a-d as dual COX-2 and 5-LOX inhibitors. Compounds 5a, 6a, and 6b were the most potent and COX-2 selective inhibitors (IC50= 0.03-0.06 µM, SI = 282.7-472.9) with high activity against 5-LOX (IC50 = 4.36-4.86 µM), while compounds 5b and 10a were active and selective 5-LOX inhibitors with IC50 = 2.43 and 1.58 µM, respectively. In vivo assay and histopathological examination for most active candidate 6a revealed significant decrease in inflammation with higher safety profile in comparison to standard drugs. Compound 6a exhibited the same orientation and binding interactions as the reference COX-2 and 5-LOX inhibitors (celecoxib and quercetin, respectively). Consequently, compound 6a has been identified as a potential lead for further optimization and the development of safe and effective anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Thiazoles , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Drug Design , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiazoles/pharmacology , Thiazolidines/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology
4.
J Enzyme Inhib Med Chem ; 38(1): 2191163, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36942698

ABSTRACT

As part of our ongoing endeavour to identify novel inhibitors of cancer-associated CA isoforms IX and XII as possible anticancer candidates, here we describe the design and synthesis of small library of 2-aryl-quinazolin-4-yl aminobenzoic acid derivatives (6a-c, 7a-c, and 8a-c) as new non-classical CA inhibitors. On account of its significance in the anticancer drug discovery and in the development of effective CAIs, the 4-anilinoquinazoline privileged scaffold was exploited in this study. Thereafter, the free carboxylic acid functionality was appended in the ortho (6a-c), meta (7a-c), or para-positon (8a-c) of the anilino motif to furnish the target inhibitors. All compounds were assessed for their inhibitory activities against the hCA I, II (cytosolic), IX, and XII (trans-membrane, tumour-associated) isoforms. Moreover, six quinazolines (6a-c, 7b, and 8a-b) were chosen by the NCI-USA for in vitro anti-proliferative activity evaluation against 59 human cancer cell lines representing nine tumour subpanels.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrase IX , Molecular Structure , Structure-Activity Relationship , Carbonic Anhydrases/metabolism , Carboxylic Acids/pharmacology , Carbonic Anhydrase Inhibitors , Quinazolines/pharmacology , Neoplasms/pathology , Antigens, Neoplasm/metabolism
5.
Sci Rep ; 13(1): 4144, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914702

ABSTRACT

To exploit the advantageous properties of approved drugs to hasten anticancer drug discovery, we designed and synthesized a series of fluoroquinolone (FQ) analogs via functionalization of the acid hydrazides of moxifloxacin, ofloxacin, and ciprofloxacin. Under the NCI-60 Human Tumor Cell Line Screening Assay, (IIIf) was the most potent among moxifloxacin derivatives, whereas (VIb) was the only ofloxacin derivative with significant effects and ciprofloxacin derivatives were devoid of activity. (IIIf) and (VIb) were further selected for five-dose evaluation, where they showed potent growth inhibition with a mean GI50 of 1.78 and 1.45 µM, respectively. (VIb) elicited a more potent effect reaching sub-micromolar level on many cell lines, including MDA-MB-468 and MCF-7 breast cancer cell lines (GI50 = 0.41 and 0.42 µM, respectively), NSCLC cell line HOP-92 (GI50 = 0.50 µM) and CNS cell lines SNB-19 and U-251 (GI50 = 0.51 and 0.61 µM, respectively). (IIIf) and (VIb) arrested MCF-7 cells at G1/S and G1, respectively, and induced apoptosis mainly through the intrinsic pathway as shown by the increased ratio of Bax/Bcl-2 and caspase-9 with a lesser activation of the extrinsic pathway through caspase-8. Both compounds inhibited topoisomerase (Topo) with preferential activity on type II over type I and (VIb) was marginally more potent than (IIIf). Docking study suggests that (IIIf) and (VIb) bind differently to Topo II compared to etoposide. (IIIf) and (VIb) possess high potential for oral absorption, low CNS permeability and low binding to plasma proteins as suggested by in silico ADME calculations. Collectively, (IIIf) and (VIb) represent excellent lead molecules for the development of cytotoxic agents from quinolone scaffolds.


Subject(s)
Antineoplastic Agents , Fluoroquinolones , Humans , Molecular Structure , Structure-Activity Relationship , Fluoroquinolones/pharmacology , Moxifloxacin/pharmacology , Cell Proliferation , Cell Cycle Checkpoints , Antineoplastic Agents/chemistry , Cell Line, Tumor , Ciprofloxacin/pharmacology , Apoptosis , Ofloxacin/pharmacology , Drug Screening Assays, Antitumor , Cell Cycle
6.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36558927

ABSTRACT

A new series of 5-(4-chlorophenyl)-1,3,4-thiadiazole-based compounds featuring pyridinium (3), substituted piperazines (4a-g), benzyl piperidine (4i), and aryl aminothiazoles (5a-e) heterocycles were synthesized. Evaluation of the cytotoxicity potential of the new compounds against MCF-7 and HepG2 cancer cell lines indicated that compounds 4e and 4i displayed the highest activity toward the tested cancer cells. A selectivity study demonstrated the high selective cytotoxicity of 4e and 4i towards cancerous cells over normal mammalian Vero cells. Cell cycle analysis revealed that treatment with either compound 4e or 4i induced cell cycle arrest at the S and G2/M phases in HepG2 and MCF-7 cells, respectively. Moreover, the significant increase in the Bax/Bcl-2 ratio and caspase 9 levels in HepG2 and MCF-7 cells treated with either 4e or 4i indicated that their cytotoxic effect is attributed to the ability to induce apoptotic cell death. Finally, an in vivo radioactive tracing study of compound 4i proved its targeting ability to sarcoma cells in a tumor-bearing mice model.

7.
Eur J Med Chem ; 243: 114704, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36095992

ABSTRACT

Pharmacologic inhibition of the oncogenic protein kinases using small molecules is a promising strategy to combat several human malignancies. CDK1 is an example of such a valuable target for the management of pancreatic ductal adenocarcinomas (PDAC); its overexpression in PDAC positively correlates with the size, histological grade and tumor aggressiveness. Here we report the identification of novel series of 1-piperazinyl-4-benzylphthalazine derivatives (8a-g, 10a-i and 12a-d) as promising anticancer agents with CDK1 inhibitory activity. The anti-proliferative activity of these agents was first screened on a panel of 11 cell lines representing 5 cancers (pancreas, melanoma, leukemia, colon and breast), and then confirmed on two CDK1-overexpressing PDAC cell lines (MDA-PATC53 and PL45 cells). Phthalazines 8g, 10d and 10h displayed potent activity against MDA-PATC53 (IC50 = 0.51, 0.88 and 0.73 µM, respectively) and PL45 (IC50 = 0.74, 1.14 and 1.00 µM, respectively) cell lines. Furthermore, compounds 8g, 10d and 10h exhibited potent and selective inhibitory activity toward CDK1 with IC50 spanning in the range 36.80-44.52 nM, whereas they exerted weak inhibitory effect on CDK2, CDK5, AXL, PTK2B, FGFR, JAK1, IGF1R and BRAF kinases. Western blotting of CDK1 in MDA-PATC53 cells confirmed the ability of target phthalazines to diminish the CDK1 levels, and cell cycle analyses revealed their ability to arrest the cell cycle at G2/M phase. In conclusion, a panel of potent and selective CDK1 inhibitors were identified which can serve as lead compounds for designing further CDK1 inhibitors.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Phthalazines/pharmacology , Piperazine/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Protein Kinase Inhibitors/pharmacology , Drug Screening Assays, Antitumor , CDC2 Protein Kinase , Pancreatic Neoplasms
8.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805916

ABSTRACT

In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
9.
Bioorg Chem ; 126: 105888, 2022 09.
Article in English | MEDLINE | ID: mdl-35661530

ABSTRACT

Recently, different mechanisms for inhibition of carbonic anhydrases (CAs) have been reported, such as the classical zinc-binding (exerted by sulfonamides and carboxylic acids) as well as occluding the entrance of the CA active site (exerted by coumarins). In this manuscript, we studied the effect of combining the pharmacopheric parts responsible for these two mechanisms on CA inhibitory potency and selectivity through the design and synthesis of novel coumarins tethered with the zinc-binding sulfonamide (5a-f, 11a-b and 13a-b) or carboxylic acid (7a-f) groups. In addition, another set of coumarin derivatives (9a-b) with no zinc-binding group (ZBG) was designed to act as non-classical CA inhibitors. The synthesized coumarins were examined for their inhibitory activities towards four hCA isoforms I, II, IX and XII. Coumarin sulfonamides (5a-f, 11a-b and 13a-b) effectively inhibited both tumor-associated hCA IX (KIs: 8.9-133.5 nM) and hCA XII (KIs: 3.4-42.9 nM) isoforms, whereas coumarin carboxylic acids (7a-f) weakly affected hCA IX (KIs: 0.49-11.2 µM) and hCA XII (KIs: 0.51-10.1 µM) isoforms. The coumarin based inhibitors featuring zinc-binding sulfonamide or carboxylic acid group achieved low to moderate hCA IX/XII selectivity. Interestingly, the ZBG-free coumarin derivatives (9a-b) emerged not only as effective hCA IX (KIs = 93.3 and 63.8 nM, respectively) and hCA XII (KIs = 85.7 and 72.1 nM, respectively) inhibitors, but also as a highly hCA IX/XII selective inhibitors over the off-target hCA I/II isoforms (SIs > 1000). Coumarin 9a was further evaluated for its anti-proliferative effect on MCF-7 and PANC-1 cancer cell lines, as well as its effect on the cell cycle and apoptosis towards MCF-7 cell line.


Subject(s)
Carbonic Anhydrases , Neoplasms , Antigens, Neoplasm/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/metabolism , Carboxylic Acids/pharmacology , Coumarins/chemistry , Humans , Molecular Structure , Protein Isoforms/metabolism , Structure-Activity Relationship , Sulfanilamide , Sulfonamides/chemistry , Zinc
10.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566059

ABSTRACT

The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure-activity relationship.


Subject(s)
Thiadiazoles , Drug Design , Oxadiazoles/pharmacology , Structure-Activity Relationship , Thiadiazoles/pharmacology
11.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35455425

ABSTRACT

Breast cancer is the most common malignancy worldwide; therefore, the development of new anticancer agents is essential for improved tumor control. By adopting the pharmacophore hybridization approach, two series of 7-hydroxyl-4-methylcoumarin hybridized with thiosemicarbazone (V-VI) and thiazolidin-4-one moieties (VII-VIII) were prepared. The in vitro anticancer activity was assessed against MCF-7 cells adopting the MTT assay. Nine compounds showed significant cytotoxicity. The most promising compound, VIIb, induced remarkable cytotoxicity (IC50 of 1.03 + 0.05 µM). Further investigations were conducted to explore its pro-apoptotic activity demonstrating S-phase cell cycle arrest. Apoptosis rates following VIIb treatment revealed a 5-fold and 100-fold increase in early and late apoptotic cells, correspondingly. Moreover, our results showed caspase-9 dependent apoptosis induction as manifested by an 8-fold increase in caspase-9 level following VIIb treatment. Mechanistically, VIIb was found to target the PI3K-α/Akt-1 axis, as evidenced by enzyme inhibition assay results reporting significant inhibition of examined enzymes. These findings were confirmed by Western blot results indicating the ability of VIIb to repress levels of Cyclin D1, p-PI3K, and p-Akt. Furthermore, docking studies showed that VIIb has a binding affinity with the PI3K binding site higher than the original ligands X6K. Our results suggest that VIIb has pharmacological potential as a promising anti-cancer compound by the inhibition of the PI3K/Akt axis.

12.
J Enzyme Inhib Med Chem ; 37(1): 563-572, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35012384

ABSTRACT

On account of its crucial role in the virus life cycle, SARS-COV-2 NSP13 helicase enzyme was exploited as a promising target to identify a novel potential inhibitor using multi-stage structure-based drug discovery approaches. Firstly, a 3D pharmacophore was generated based on the collected data from a protein-ligand interaction fingerprint (PLIF) study using key interactions between co-crystallised fragments and the NSP13 helicase active site. The ZINC database was screened through the generated 3D-pharmacophore retrieving 13 potential hits. All the retrieved hits exceeded the benchmark score of the co-crystallised fragments at the molecular docking step and the best five-hit compounds were selected for further analysis. Finally, a combination between molecular dynamics simulations and MM-PBSA based binding free energy calculations was conducted on the best hit (compound FWM-1) bound to NSP13 helicase enzyme, which identified FWM-1 as a potential potent NSP13 helicase inhibitor with binding free energy equals -328.6 ± 9.2 kcal/mol.


Subject(s)
COVID-19 Drug Treatment , Drug Discovery , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays/methods , Molecular Docking Simulation , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19/virology , Catalytic Domain , Humans , Ligands , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship
13.
Bioorg Chem ; 116: 105334, 2021 11.
Article in English | MEDLINE | ID: mdl-34534755

ABSTRACT

The ensuing research presents the results of in vitro anticancer activity of novel 28 compounds of isoxazole-based carboxamides 3(a-d); ureates 4(a-g), 5, 6, 7a,b, 8; and hydrazones 9(a-f), 10(a-d), 11a,b as potential inhibitors of VEGFR2. The carboxamides and ureates were synthesized by converting 5-(aryl)-isoxzaole-3-carbohydrazides 1a,b to the corresponding carbonylazides 2a,b followed by treatment with the appropriate amines. The hydrazones were directly obtained through condensation of the carbohydrazide 1a,b with aldehydes and/or ketones. The structures of the target compounds were confirmed by elemental and spectral analyses. A preliminary in vitro anticancer screening of solutions (10-5M) on 60 cancer cell lines (NCI, USA) revealed that the carboxamide 3c is the most promising growth inhibitor. Explicitly, 3c showed potent anticancer activity at 10µ M against leukemia (HL-60(TB), K-562 and MOLT-4), colon cancer (KM12) and melanoma (LOX IMVI) cell lines with %GI range = 70.79-92.21. Evaluation of growth inhibitory activity of the synthesized compounds against hepatocellular carcinoma (HepG2), that overexpresses VEGFR2, showed superior activity of compounds 8, 10a and 10c with IC50 in sub micromolar concentrations of 0.84, 0.79 and 0.69 µM, respectively, which is better than that of the reference drug, Sorafenib (IC50 = 3.99 µM). Moreover, these compounds displayed high selective cytotoxicity for HepG2 cancer cells over the nontumorigenic THLE2 liver cells (SI range = 26.37-38.60) which reflect their safety. The results of VEGFR2 kinase inhibition assay demonstrate that, compounds 8 and 10a are the most active inhibitors with IC50 = 25.7 and 28.2 nM, respectively, (Sorafenib IC50 = 28.1 nM). Molecular docking of the synthesized derivatives to VEGFR2 (PDB: 3WZE) showed similar binding modes to that of the co-crystallized ligand, sorafenib. Moreover, the results of computational assessment of ADME and drug-likeness characteristics inspire further investigations of the new isoxazole-based derivatives to afford more potent, safe and orally active VEGFR2 inhibitors as potential anticancer drug candidates.


Subject(s)
Antineoplastic Agents/pharmacology , Hydrazones/pharmacology , Isoxazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Urea/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrazones/chemistry , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
14.
J Enzyme Inhib Med Chem ; 36(1): 384-393, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33406941

ABSTRACT

Joining the global fight against Tuberculosis, the world's most deadly infectious disease, herein we present the design and synthesis of novel isatin-nicotinohydrazide hybrids (5a-m and 9a-c) as promising anti-tubercular and antibacterial agents. The anti-tubercular activity of the target hybrids was evaluated against drug-susceptible M. tuberculosis strain (ATCC 27294) where hybrids 5d, 5g and 5h were found to be as potent as INH with MIC = 0.24 µg/mL, also the activity was evaluated against Isoniazid/Streptomycin resistant M. tuberculosis (ATCC 35823) where compounds 5g and 5h showed excellent activity (MIC = 3.9 µg/mL). Moreover, the target hybrids were examined against six bronchitis causing-bacteria. Most derivatives exhibited excellent antibacterial activity. K. pneumonia emerged as the most sensitive strain with MIC range: 0.49-7.81 µg/mL. Furthermore, a molecular docking study has proposed DprE1 as a probable enzymatic target for herein reported isatin-nicotinohydrazide hybrids, and explored the binding interactions within the vicinity of DprE1 active site.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Drug Resistance, Bacterial/drug effects , Hydrazines/chemistry , Isatin/chemistry , Mycobacterium tuberculosis/enzymology , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Bordetella pertussis/chemistry , Bordetella pertussis/enzymology , Bordetella pertussis/isolation & purification , Bronchitis/drug therapy , Bronchitis/microbiology , Drug Design , Drug Resistance, Bacterial/genetics , Haemophilus influenzae/chemistry , Haemophilus influenzae/enzymology , Haemophilus influenzae/isolation & purification , Isoniazid/pharmacology , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Molecular Docking Simulation , Moraxella catarrhalis/chemistry , Moraxella catarrhalis/enzymology , Moraxella catarrhalis/isolation & purification , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/isolation & purification , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/isolation & purification , Streptomycin/pharmacology , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/microbiology
15.
Bioorg Chem ; 108: 104555, 2021 03.
Article in English | MEDLINE | ID: mdl-33376011

ABSTRACT

Two new series of 1,3,4-oxadiazole and coumarin derivatives based on pyrimidine-5-carbonitrile scaffold have been synthesized and evaluated for their COX-1/COX-2 inhibitory activity. Compounds 10c, 10e, 10h-j, 14e-f, 14i and 16 were found to be the most potent and selective inhibitors of COX-2 (IC50 0.041-0.081 µM, SI 139.74-321.95). Eight compounds were further investigated for their in vivo anti-inflammatory activity. The most active derivatives 10c, 10j and 14e displayed superior in vivo anti-inflammatory activity (% edema inhibition 39.3-48.3, 1 h; 58.4-60.5, 2 h; 70.8-83.2, 3 h; 78.9-89.5, 4 h) to the reference drug celecoxib (% edema inhibition 38.0, 1 h; 48.8, 2 h; 58.4, 3 h; 65.4, 4 h). These derivatives were also tested for their ulcerogenic liability, compound 10j showed better safety profile with reference to celecoxib while 10c and 14e exhibited mild lesions. Molecular docking studies of 10c, 10j, and 14e in the COX-2 active site revealed similar orientation and binding interactions as selective COX-2 inhibitors with a higher liability to access the selectivity side pocket.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Molecular Docking Simulation , Pyrimidines/pharmacology , Ulcer/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Humans , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Sheep , Structure-Activity Relationship , Ulcer/metabolism , Ulcer/pathology
16.
Eur J Med Chem ; 209: 112897, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33038795

ABSTRACT

In this study, diverse series of coumarin derivatives were developed as potential carbonic anhydrase inhibitors (CAIs). A "tail" approach was adopted by selecting the coumarin motif as a tail that is connected to the ZBG benzenesulfonamide moiety via a hydrazine (4a,b) or hydrazide (5a,b) linker. Thereafter, an aryl sulfone tail was incorporated to afford the dual tailed coumarin-sulfonamide arylsulfonehydrazones (13a-d) and hydrazides (14a,b). Then, the ZBG were removed from compounds 13 and 14 to furnish coumarin arylsulfonehydrazones (11a-d) and hydrazides (12a,b). Coumarin-sulfonamides 4 and 5 emerged as non-selective CAIs as they displayed good inhibitory activities toward all the examined CA isozymes (I, II, IX and XII) in the nanomolar ranges. Interestingly, the "dual-tail" approach (compounds 13 and 14) succeeded in achieving a good activity and selectivity toward CA IX/XII over the physiologically dominant CA I/II. In particular, compounds 13d and 14a were the most selective coumarin-sulfonamide counterparts. Concerning non-sulfonamide coumarin derivatives, coumarins 8 exhibited excellent activity and selectivity profiles against the target hCA IX/XII, whereas, coumarins 11 and 12 reported excellent selectivity profile, but they barely inhibited hCA IX/XII with KIs spanning in the micromolar ranges. Furthermore, molecular modelling studies were applied to get a deep focus about the feasible affinities and binding interactions for target coumarin-sulfonamides 4, 5, 13 and 14 with the active site for CA II, IX and XII isoforms.


Subject(s)
Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Coumarins/chemistry , Coumarins/pharmacology , Carbonic Anhydrase IX/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship
17.
Future Med Chem ; 12(5): 403-421, 2020 03.
Article in English | MEDLINE | ID: mdl-32027179

ABSTRACT

Aim: Design and synthesis of novel morpholinopyrimidine-5-carbonitriles as antitumor agents. Materials & methods: New series of morpholinopyrimidine-5-carbonitriles have been synthesized. 19 derivatives (3b, 4a, 5-6, 9-12, 13a-e, 14a-c and 15-17) were evaluated for their in vitro antitumor activity by the National Cancer Institute (NCI; MD, USA). Moreover, compound 13e was evaluated against PI3K (α, ß and δ) and the mechanism of its cytotoxic activity on leukemia SR was studied. Results: Compound 13e possessed remarkable broad spectrum antitumor activity with GI50 (median growth inhibition) and TGI (total growth inhibition) values of 6.15 and 28.66 µM, respectively, caused cell cycle arrest at G2-M phase and significant increase in the percentage of annexin V-FITC - positive apoptotic cells, also increased the level of active caspase-3. Moreover, 13e revealed good safety profile against transformed human liver epithelial-2 (THLE2).


Subject(s)
Antineoplastic Agents/pharmacology , Nitriles/poisoning , Pyrimidines/poisoning , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry
18.
Eur J Med Chem ; 189: 112019, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31972394

ABSTRACT

In the present study, we report the design and synthesis of novel CAN508 sulfonamide-based analogues (4, 8a-e, 9a-h and 10a-e) as novel carbonic anhydrase (CA) inhibitors with potential CDK inhibitory activity. A bioisosteric replacement approach was adopted to replace the phenolic OH of CAN508 with a sulfamoyl group to afford compound 4. Thereafter, a ring-fusion approach was utilized to furnish the 5/5 fused imidazopyrazoles 8a-e which were subsequently expanded to 6/5 pyrazolopyrimidines 9a-h and 10a-e. All the synthesized analogues were evaluated for their inhibitory activity toward isoforms hCA I, II, IX and XII. The target tumor-associated isoforms hCA IX and XII were effectively inhibited with KIs ranges 6-67.6 and 10.1-88.6 nM, respectively. Furthermore, all compounds were evaluated for their potential CDK2 and 9 inhibitory activities. Pyrazolopyrimidines 9d, 9e and 10b displayed weak CDK2 inhibitory activity (IC50 = 6.4, 8.0 and 11.6 µM, respectively), along with abolished CDK9 inhibitory activity. This trend suggested that pyrazolopyrimidine derivatives merit further optimization to furnish more effective CDK2 inhibitor lead. On account of their excellent activity and selectivity towards hCA IX and XII, pyrazolopyrimidines 10 were evaluated for their anti-proliferative activity toward breast cancer MCF-7 and MDA-MB-468 cell lines under normoxic and hypoxic conditions. The most potent anti-proliferative agents 10a, 10c and 10d significantly increased cell percentage at sub-G1 and G2-M phases with concomitant decrease in the S phase population in MCF-7 treated cells. Finally, a docking study was undertaken to investigate the binding mode for the most selective hCA IX and XII inhibitors 10a-e, within hCA II, IX and XII active sites.


Subject(s)
Antineoplastic Agents/pharmacology , Azo Compounds/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/chemistry , Drug Design , Neoplasms/drug therapy , Pyrazoles/chemistry , Antineoplastic Agents/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , In Vitro Techniques , Molecular Docking Simulation , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship , Sulfonamides/chemistry
19.
J Enzyme Inhib Med Chem ; 35(1): 298-305, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31809607

ABSTRACT

Pursuing on our efforts toward searching for efficient hCA IX and hCA XII inhibitors, herein we report the design and synthesis of new sets of benzofuran-based sulphonamides (4a,b, 5a,b, 9a-c, and 10a-d), featuring the zinc anchoring benzenesulfonamide moiety linked to a benzofuran tail via a hydrazine or hydrazide linker. All the target benzofurans were examined for their inhibitory activities toward isoforms hCA I, II, IX, and XII. The target tumour-associated hCA IX and XII isoforms were efficiently inhibited with KIs spanning in ranges 10.0-97.5 and 10.1-71.8 nM, respectively. Interestingly, arylsulfonehydrazones 9 displayed the best selectivity toward hCA IX and XII over hCA I (SIs: 39.4-250.3 and 26.0-149.9, respectively), and over hCA II (SIs: 19.6-57.1 and 13.0-34.2, respectively). Furthermore, the target benzofurans were assessed for their anti-proliferative activity, according to US-NCI protocol, toward a panel of sixty cancer cell lines. Only benzofurans 5b and 10b possessed selective and moderate growth inhibitory activity toward certain cancer cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Sulfonamides/pharmacology , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzofurans/chemistry , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
20.
Eur J Med Chem ; 185: 111843, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31718943

ABSTRACT

In the presented work, we report the design and synthesis of different new sets of triazolopyrimidine-based (9a-d) and triazole-based (11a-h, 13a-c, 15a,b, 17a,b and 21a-g) benzenesulfonamides. The newly synthesized sulfonamides were assessed for their inhibitory activities toward four human (h) metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) isoforms; hCA I, II, IX and XII. The four examined isoforms were inhibited by the prepared sulfonamides (9a-d, 11a-h, 13a-c, 15a,b, 17a,b and 21a-g) in variable degrees with KIs ranges: 94.4-4953.5 nM for hCA I, 6.9-837.6 nM for hCA II, 3.3-85.0 nM for hCA XI, and 4.4-105.0 nM for hCA XII. In particular, sulfonamides 11e, 21a and 21e emerged as single-digit nanomolar hCA IX and hCA XII inhibitors. Interestingly, triazolopyrimidine-based sulfonamide 9d and triazole-based sulfonamide 21e were found to be the most selective hCA IX inhibitors over hCA I (SI = 100.85 and 210.58, respectively) and hCA II (SI = 18.54 and 38.36, respectively). Thereafter, sulfonamides 9d and 21e were docked into the active site of CAs II, IX and XII, then poses showing the best scoring values and favorable binding interactions were subjected to a MM-GBSA based refinement and, limited to CA IX and XII, to a cycle of 100 ns molecular dynamics.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Molecular Dynamics Simulation , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Triazoles/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Structure , Pyrimidines/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Triazoles/chemistry , Benzenesulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...