Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 15(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36851624

ABSTRACT

High-throughput sequencing (HTS) has been an important tool for the discovery of plant viruses and their surveillance. In 2015, several virus-like symptoms were observed in passion fruit (PF) plants in Bahia state, Brazil. Using HTS technology, bioinformatics tools, RT-PCR, and Sanger sequencing, we identified the cucurbit aphid-borne yellows virus (CABYV, Polerovirus, Solemoviridae) in co-infection with cowpea aphid-borne mosaic virus (CABMV, Potyvirus, Potyviridae) in PF, in green manure, and spontaneous plants in several localities in Bahia. Complete genomes of CABYV-PF isolates were determined and analyzed with other CABYV isolates available in GenBank that have been identified in various countries. Phylogenetic analysis and pairwise identity comparison with CABYV isolates showed that CABYV-PFs are more closely related to French and Spanish isolates. Overall, analyses of all the CABYV genomes revealed that these could represent ten distinct species, and we thus proposed reclassifying these CABYV as isolates into ten species, tentatively named "Polerovirus curcubitaeprimum" to "Polerovirus curcubitaenonum", and "Polerovirus melo". CABYV-PF is a member of "Polerovirus curcubitaeprimum".


Subject(s)
Luteoviridae , Passiflora , Brazil , Fruit , Phylogeny , Luteoviridae/genetics
2.
Viruses ; 15(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36851755

ABSTRACT

Papaya sticky disease is caused by the association of a fusagra-like and an umbra-like virus, named papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), respectively. Both viral genomes are encapsidated in particles formed by the PMeV ORF1 product, which has the potential to encode a protein with 1563 amino acids (aa). However, the structural components of the viral capsid are unknown. To characterize the structural proteins of PMeV and PMeV2, virions were purified from Carica papaya latex. SDS-PAGE analysis of purified virus revealed two major proteins of ~40 kDa and ~55 kDa. Amino-terminal sequencing of the ~55 kDa protein and LC-MS/MS of purified virions indicated that this protein starts at aa 263 of the deduced ORF1 product as a result of either degradation or proteolytic processing. A yeast two-hybrid assay was used to identify Arabidopsis proteins interacting with two PMeV ORF1 product fragments (aa 321-670 and 961-1200). The 50S ribosomal protein L17 (AtRPL17) was identified as potentially associated with modulated translation-related proteins. In plant cells, AtRPL17 co-localized and interacted with the PMeV ORF1 fragments. These findings support the hypothesis that the interaction between PMeV/PMeV2 structural proteins and RPL17 is important for virus-host interactions.


Subject(s)
Capsid Proteins , Carica , Amino Acids , Capsid , Capsid Proteins/genetics , Chromatography, Liquid , Latex , Tandem Mass Spectrometry , RNA Viruses/genetics
3.
Viruses ; 12(9)2020 09 15.
Article in English | MEDLINE | ID: mdl-32942623

ABSTRACT

The knowledge of genomic data of new plant viruses is increasing exponentially; however, some aspects of their biology, such as vectors and host range, remain mostly unknown. This information is crucial for the understanding of virus-plant interactions, control strategies, and mechanisms to prevent outbreaks. Typically, rhabdoviruses infect monocot and dicot plants and are vectored in nature by hemipteran sap-sucking insects, including aphids, leafhoppers, and planthoppers. However, several strains of a potentially whitefly-transmitted virus, papaya cytorhabdovirus, were recently described: (i) bean-associated cytorhabdovirus (BaCV) in Brazil, (ii) papaya virus E (PpVE) in Ecuador, and (iii) citrus-associated rhabdovirus (CiaRV) in China. Here, we examine the potential of the Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) to transmit BaCV, its morphological and cytopathological characteristics, and assess the incidence of BaCV across bean producing areas in Brazil. Our results show that BaCV is efficiently transmitted, in experimental conditions, by B. tabaci MEAM1 to bean cultivars, and with lower efficiency to cowpea and soybean. Moreover, we detected BaCV RNA in viruliferous whiteflies but we were unable to visualize viral particles or viroplasm in the whitefly tissues. BaCV could not be singly isolated for pathogenicity tests, identification of the induced symptoms, and the transmission assay. BaCV was detected in five out of the seven states in Brazil included in our study, suggesting that it is widely distributed throughout bean producing areas in the country. This is the first report of a whitefly-transmitted rhabdovirus.


Subject(s)
Hemiptera/virology , Plant Diseases/virology , Rhabdoviridae Infections/transmission , Rhabdoviridae Infections/virology , Rhabdoviridae/isolation & purification , Animals , Biological Evolution , Brazil , Carica/virology , China , Ecuador , Genomics , Middle East , Plant Leaves/virology , Plant Viruses , Plants/virology , Rhabdoviridae/classification , Rhabdoviridae/genetics , Sequence Analysis
4.
Arch Virol ; 165(12): 2891-2901, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32893316

ABSTRACT

Genomoviruses (family Genomoviridae) are circular single-stranded DNA viruses that have been mainly identified through metagenomics studies in a wide variety of samples from various environments. Here, we describe 98 genomes of genomoviruses found associated with members of 19 plant families from Australia, Brazil, France, South Africa and the USA. These 98 genomoviruses represent 29 species, 26 of which are new, in the genera Gemykolovirus (n = 37), Gemyduguivirus (n = 9), Gemygorvirus (n = 8), Gemykroznavirus (n = 6), Gemycircularvirus (n = 21) and Gemykibivirus (n = 17).


Subject(s)
DNA Virus Infections/virology , DNA Viruses/isolation & purification , Genome, Viral , Plants/virology , Australia , Brazil , DNA Viruses/classification , France , Metagenomics , Phylogeny , South Africa , United States
5.
Arch Virol ; 160(12): 3143-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26370790

ABSTRACT

Papaya sticky disease ('meleira') was first observed in Brazil at the beginning of the 1980s. The disease is characterized by intense latex exudation from the fruit surface that becomes dark as it oxidizes, which makes it difficult to sell. The causal agent, which has been called papaya meleira virus (PMeV), has been identified as an isometric virus particle, approximately 50 nm in diameter, with a double-stranded RNA genome. Here, we report the first complete sequence and organization of the 8.7-kb viral dsRNA genome. Two ORFs coding for a putative coat protein and RNA-dependent RNA polymerase (RdRp) were predicted. In silico analysis revealed that the translated ORF2 contains the conserved domains characteristic of an RdRp protein (pfam02123:RdRP 4), which is a family that includes RdRps from members of the genera Luteovirus, Totivirus and Rotavirus. Evolutionary analysis with amino acid sequences with the RdRps from members of the family Totiviridae and some dsRNA viruses showed that PMeV RdRp did not root itself in any genus.


Subject(s)
Carica/virology , Genome, Viral , Plant Diseases/virology , RNA Viruses/genetics , RNA Viruses/isolation & purification , Amino Acid Sequence , Base Sequence , Brazil , Molecular Sequence Data , Open Reading Frames , Phylogeny , RNA Viruses/chemistry , RNA Viruses/classification , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/genetics
6.
Ann Bot ; 99(2): 285-92, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17138579

ABSTRACT

BACKGROUND AND AIMS: Myo-inositol-1l-phosphate synthase (MIPS) catalyses the conversion of d-glucose 6-phosphate to 1-l-myo-inositol-1-phosphate, the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. Inositol phospholipids play a vital role in membrane trafficking and signalling pathways, auxin storage and transport, phytic acid biosynthesis, cell wall biosynthesis and production of stress-related molecules. In the present study, an MIPS cDNA from developing Passiflora edulis f. flavicarpa seeds was characterized and an investigation made into its spatial and differential expression, as well as changes in its transcription during exposure of growing plants to cold and heat stresses. METHODS: The MIPS-encoding gene was isolated by polymerase chain reaction (PCR) methods, and transcript levels were examined using semi-quantitative reverse transcription-PCR (RT-PCR) during seed development and in response to heat and cold stress. In addition, the copy number of the cloned PeMIPS1 gene in the genome of Passiflora edulis, P. eichleriana, P. caerulea, P. nitida and P. coccinea was determined by Southern blot analyses. KEY RESULTS: A full-length cDNA clone of the PeMIPS1 from P. edulis was isolated and characterized. Southern blot analyses indicated that the genomic DNA might have diverse sequences of MIPS-encoding genes and one copy of the cloned PeMIPS1 gene in the genomes of P. edulis, P. eichleriana, P. caerulea, P. nitida and P. coccinea. RT-PCR expression analyses revealed the presence of PeMIPS1 transcripts in ovules, pollen grains and leaves, and during the seed developmental stages, where it peaked at 9 d after pollination. The PeMIPS1 gene is differentially regulated under cold and heat stress, presenting a light-responsive transcription. CONCLUSIONS: Experimental data suggest that PeMIPS1 transcription plays an important role in the establishment of developmental programmes and during the response of plants to environmental changes. The PeMIPS1 is differentially transcribed during cold and heat stress, presenting a light response pattern, suggesting that it is important for environmental stress response.


Subject(s)
Environment , Gene Expression Regulation, Plant , Myo-Inositol-1-Phosphate Synthase/genetics , Myo-Inositol-1-Phosphate Synthase/metabolism , Passiflora/enzymology , Passiflora/genetics , Cloning, Molecular , Cold Temperature , Gene Expression Regulation, Developmental , Hot Temperature , Light , Molecular Sequence Data , Phylogeny , Seeds/enzymology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL