Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem Toxicol ; 193: 114967, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197517

ABSTRACT

Chlorpyrifos (CPF) is a widely used organophosphate (OP) pesticide. Unfortunately, pesticides are known to cause neuronal intoxication. Diosmin (DS) is an antioxidant, anti-inflammatory, and neuroprotective flavonoid with high efficacy and safety. We plan to investigate the efficacy of DS in treating CPF-induced neurotoxicity, as well as the mechanisms underlying the protective effects. In our study, rats were randomized into 5 groups: control, DS (50 mg/kg), CPF (10 mg/kg), CPF + DS (25 mg/kg), and CPF + DS (50 mg/kg). The results indicated that DS ameliorated neuronal intoxication induced by CPF, evidenced by decreasing Tau, p-Tau, and ß-amyloid. Histological examinations support these findings. DS significantly ameliorated CPF-induced neuronal oxidative injury by decreasing MDA content and elevating GSH, GST, and SOD levels mediated by PPAR-γ upregulation. DS suppressed CPF-induced brain inflammation by decreasing MPO enzymatic activity and TNF-α, IL-1ß, and IL-6 levels mediated by downregulation of NF-κB/AP-1(c-FOS and c-JUN) signal. Of note, DS protective effects were dose dependent. In conclusion, our data suggested that DS was a promising therapeutic strategy for attenuating CPF-induced neuronal intoxication by restoring oxidant-antioxidant balance and inhibiting inflammatory response in brain tissues.

2.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500446

ABSTRACT

Beta-Caryophyllene (BCP), a natural bicyclic sesquiterpenes, is an abundant biomolecule in red pepper and other plants. Recently, it was reported to reduce the growth and the proliferation as well as enhance the apoptosis in numerous cancer cells, including colorectal, ovarian, bladder cancer and lung cancer. On the other hand, the combination therapy of cisplatin (CDDP) with other phytochemical compounds has synergistically enhanced the killing effect of CDDP on several types of cancer. In the current model, we have tested the role of BCP in enhancing the anti-tumor activity of CDDP on lung cancer cell lines. The results showed that BCP is not toxic at moderate doses and it can prevent lung cancer progression in doses above 75 µM. However, when being combined with CDDP, BCP improved the former chemotherapeutic function through regulating cell cycle, apoptosis and EMT signaling molecules. Gene and protein expression analysis showed that the combined treatment of CDDP and BCP significantly upregulated the level of the cyclin-dependent kinase inhibitor, CDKN1A, and the inhibitor of the apoptosis, BCL-xl2. In addition, the combination treatment reduced the protein level of the apoptosis regulator, BCL-2. Moreover, BCP appears to prohibit the EMT process that is associated with CDDP chemotherapy since the combination treatment induced a significant increase in the level of the epithelial cell marker E-cad that was reduced in CDDP-treated cells. In agreement with that, the combined treatment managed to modulate the effect of CDDP on the mesenchymal transcription factor ZEB-2. Additionally, molecular docking has been conducted to check the virtual interaction of BCP with these and other signaling molecules, but only cyclin-dependent kinase CDK6 was found to virtually bind with BCP, and at four sites with higher and stable biding energy (-7.8). Together, these data indicate that BCP enhances CDDP chemotherapeutic function through regulating the cell cycle, the apoptosis and EMT signaling molecules.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Cisplatin , Molecular Docking Simulation , Cell Proliferation , Lung Neoplasms/metabolism , Apoptosis , Cell Cycle , Cell Line , Cyclin-Dependent Kinases , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm
3.
Plant Physiol Biochem ; 74: 92-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24286716

ABSTRACT

The cyclic nucleotides cGMP and cAMP have been reported to play key roles in the regulation of plant processes and responses. We have previously reported that several genes encoding flavonoid biosynthetic enzymes, including chalcone synthase (CHS) in soybean (Glycine max L.), were induced by cGMP but not cAMP. The soybean genome contains nine CHS gene copies (GmCHS1-9). We investigated the responsiveness of several GmCHS genes to cGMP, cAMP, NO, and white light. Quantitative RT-PCR analysis showed that the transcript levels of GmCHS7 and GmCHS8 were increased by 3.6- and 3.8-fold, respectively, with cGMP whereas the transcript levels of GmCHS2 remained constant. Although cAMP had no effect on the transcript levels of the three genes, NO had an activation effect on all three. White light activated the three genes in a transient manner, with GmCHS2, GmCHS7, and GmCHS8 transcript levels increasing 3-fold after 3 h and decreasing to basal levels after 9 h. The GmCHS8 promoter contains several important cis-elements, including the G-box and H-box forming the Unit-I-like sequence and the MYB binding sequence, a target of the GmMYB176 transcription factor regulating the expression of GmCHS8. A transient gene expression assay revealed the activation of the Unit-I-like sequence, but not of the MYB binding sequence, by cGMP. The combination of G-box and H-box was necessary for cGMP responsiveness. Taken together, these results suggest that the Unit-I-like sequence in the promoters of GmCHS7 and GmCHS8 is a cGMP responsive cis-element in these genes and that NO exerts its effect via cis-elements other than the Unit-I-like sequence.


Subject(s)
Acyltransferases/genetics , Cyclic GMP/metabolism , Glycine max/genetics , Promoter Regions, Genetic , Base Sequence , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Plant , Nitric Oxide/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Glycine max/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL