Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 17(7): e13739, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948538

ABSTRACT

The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR.

2.
Sci Total Environ ; 872: 162111, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36773924

ABSTRACT

Tropical deep reefs (>30 m) are biologically and ecologically unique ecosystems with a higher geographic reach to shallow (<30 m) reefs. Yet they are poorly understood and rarely considered in conservation practices. Here, we characterise benthic and fish communities across a depth gradient (10-350 m) in remote coral atolls in Seychelles, Western Indian Ocean. Using taxonomic and trait-based approaches we present the taxonomic and functional composition of shallow and deep reef communities, with distinct communities and traits dominating different depths. Depth-related changes in community metrics (taxa richness, abundance and biomass) and functional diversity metrics (richness, dispersion, and evenness) indicate complex relationships across different biological components (fish, benthos) that differ between shallow and deep reefs. These in turn translate into different patterns of reef resilience against disturbance or species invasions with depth. Notably, deep reefs host on average fewer and less abundant taxa but with higher functional contribution and originality scores, some of which are of conservation concern. Overall, the results highlight the unique nature of deep reefs that requires their explicit consideration in conservation and management activities.


Subject(s)
Anthozoa , Ecosystem , Animals , Coral Reefs , Indian Ocean , Biodiversity , Biomass , Fishes
SELECTION OF CITATIONS
SEARCH DETAIL
...