Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Environ Int ; 189: 108728, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850672

ABSTRACT

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.


Subject(s)
Benzhydryl Compounds , Environmental Monitoring , Environmental Pollutants , Phenols , Phenols/toxicity , Benzhydryl Compounds/toxicity , Environmental Pollutants/toxicity , Environmental Monitoring/methods , Animals , Humans , Endocrine Disruptors/toxicity
2.
Environ Sci Technol ; 58(1): 90-98, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38112183

ABSTRACT

While the immunomodulation effects of per- and polyfluoroalkyl substances (PFASs) are described on the level of clinical signs in epidemiological studies (e.g., suppressed antibody response after vaccination), the underlying mechanism has still not been fully elucidated. To reveal mechanisms of PFAS exposure on immunity, we investigated the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMCs) responding to PFAS exposure (specifically, exposure to PFPA, PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS). Blood samples and the chemical load in the blood were analyzed under the cross-sectional CELSPAC: Young Adults study. The overall aim of the study was to identify sensitive gene sets and cellular pathways conserved for multiple PFAS chemicals. Transcriptome networks related to adaptive immunity were perturbed by multiple PFAS exposure (i.e., blood levels of at least four PFASs). Specifically, processes tightly connected with late B cell development, such as B cell receptor signaling, germinal center reactions, and plasma cell development, were shown to be affected. Our comprehensive transcriptome analysis identified the disruption of B cell development, specifically the impact on the maturation of antibody-secreting cells, as a potential mechanism underlying PFAS immunotoxicity.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Young Adult , Humans , Transcriptome , Cross-Sectional Studies , Leukocytes, Mononuclear , Czech Republic , Fluorocarbons/toxicity
3.
Environ Res ; 229: 115969, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37116680

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFASs) are emerging environmental contaminants with multiple hazardous properties including immunomodulation potency. Human exposure to PFASs has been associated with various immune-mediated diseases and outcomes. This study aimed to investigate the association between PFAS exposure and immune-mediated diseases such as allergies, eczemas, and autoimmune diseases in a population of adults in the Czech Republic. METHODS: This study included 309 adults from the Central European Longitudinal Study of Parents and Children: Young Adults (CELSPAC: YA). 12 PFASs were measured in participants' serum by HPLC-MS/MS, 3 PFASs were removed from the subsequent analyses due to low detection frequency. The associations of 9 PFASs with 9 immune-mediated diseases were assessed by logistic regression. Furthermore, Bayesian kernel machine regression (BKMR) was used to estimate the effect of the PFAS mixture on immune-mediated diseases. All analyses were adjusted for sex, age, BMI, smoking, education, and family history of immune-mediated diseases. In cases of a statistically significant interaction of PFASs and sex, stratified analyses were performed for men and women. RESULTS: Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) were negatively associated with both atopic eczema (OR per IQR increase 0.58 (95% CI 0.37-0.90) for PFOA and 0.56 (0.32-0.95) for PFOS) and contact dermatitis (0.37 (0.16-0.85) for PFOA and 0.33 (0.11-0.94) for PFOS). Perfluoroundecanoate (PFUnDA) was negatively associated with pollen, dust, and mite allergy (0.62 (0.43-0.89)). BKMR modelling showed a negative tendency in the overall effect of PFAS mixture on immune-health outcomes. Based on the stratified analysis, sex was suggested to be an effect modifier in the association of PFOS and atopic eczema. CONCLUSION: Our results contribute to the body of literature that observes the immunosuppressive effect of PFAS exposure during eczemas and allergies, both for PFASs individually and as a mixture.


Subject(s)
Alkanesulfonic Acids , Dermatitis, Atopic , Eczema , Environmental Pollutants , Fluorocarbons , Hypersensitivity , Male , Child , Young Adult , Humans , Female , Environmental Pollutants/toxicity , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/epidemiology , Longitudinal Studies , Czech Republic/epidemiology , Prevalence , Bayes Theorem , Tandem Mass Spectrometry , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity
4.
Environ Res ; 217: 114650, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36309218

ABSTRACT

While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.


Subject(s)
Adverse Outcome Pathways , Humans , Risk Assessment/methods
5.
Article in English | MEDLINE | ID: mdl-35533547

ABSTRACT

The physiology of males and females can be vastly different, complicating interpretation of toxicological and physiological data. The objectives of this study were to elucidate the sex differences in the microbiome-gastrointestinal (GI) transcriptome of adult zebrafish. We compared microbial composition and diversity in both males and females fed the same diet and housed in the same environment. There were no sex-specific differences in weight gain nor gastrointestinal morphology based on histopathology. There was no difference in gut microbial diversity, richness (Shannon and Chao1 index) nor predicted functional composition of the microbiome between males and females. Prior to post-hoc correction, male zebrafish showed higher abundance for the bacterial families Erythrobacteraceae and Lamiaceae, both belonging to the phyla Actinobacteria and Proteobacteria. At the genus level, Lamia and Altererythrobacter were more dominant in males and an unidentified genus in Bacteroidetes was more abundant in females. There were 16 unique differentially expressed transcripts in the gastrointestinal tissue between male and female zebrafish (FDR corrected, p < 0.05). Relative to males, the mRNA expression for trim35-9, slc25a48, chchd3b, csad, and hsd17b3 were lower in female GI while cyp2k6, adra2c, and bckdk were higher in the female GI. Immune and lipid-related gene network expression differed between the sexes (i.e., cholesterol export and metabolism) as well as networks related to gastric motility, gastrointestinal system absorption and digestion. Such data provide clues as to putative differences in gastrointestinal physiology between male and female zebrafish. This study identifies host-transcriptome differences that can be considered when interpreting the microgenderome of zebrafish in studies investigating GI physiology and toxicology of fishes.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Apoptosis Regulatory Proteins , Bacteria , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Male , Zebrafish/genetics
6.
Anal Chim Acta ; 1192: 339352, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35057964

ABSTRACT

Laser-induced breakdown spectroscopy is often combined with a multivariate black box model-such as support vector machines (SVMs)-to obtain desirable quantitative or qualitative results. This approach carries obvious risks when practiced in high-stakes applications. Moreover, the lack of understanding of a black-box model limits the user's ability to fine-tune the model. Thus, here we present four approaches to interpret SVMs through investigating which features the models consider important in the classification task of 19 algal and cyanobacterial species. The four feature importance metrics are compared with popular approaches to feature selection for optimal SVM performance. We report that the distinct feature importance metrics yield complementary and often comparable information. In addition, we identify our SVM model's bias towards features with a large variance, even though these features exhibit a significant overlap between classes. We also show that the linear and radial basis kernel SVMs weight the same features to the same degree.


Subject(s)
Lasers , Support Vector Machine , Spectrum Analysis
7.
Toxins (Basel) ; 13(9)2021 08 28.
Article in English | MEDLINE | ID: mdl-34564605

ABSTRACT

Fish are exposed to numerous stressors in the environment including pollution, bacterial and viral agents, and toxic substances. Our study with common carps leveraged an integrated approach (i.e., histology, biochemical and hematological measurements, and analytical chemistry) to understand how cyanobacteria interfere with the impact of a model viral agent, Carp sprivivirus (SVCV), on fish. In addition to the specific effects of a single stressor (SVCV or cyanobacteria), the combination of both stressors worsens markers related to the immune system and liver health. Solely combined exposure resulted in the rise in the production of immunoglobulins, changes in glucose and cholesterol levels, and an elevated marker of impaired liver, alanine aminotransferase (ALT). Analytical determination of the cyanobacterial toxin microcystin-LR (MC-LR) and its structurally similar congener MC-RR and their conjugates showed that SVCV affects neither the levels of MC in the liver nor the detoxification capacity of the liver. MC-LR and MC-RR were depurated from liver mostly in the form of cysteine conjugates (MC-LR-Cys, MC-RR-Cys) in comparison to glutathione conjugates (LR-GSH, RR-GSH). Our study brought new evidence that cyanobacteria worsen the effect of viral agents. Such inclusion of multiple stressor concept helps us to understand how and to what extent the relevant environmental stressors co-influence the health of the fish population.


Subject(s)
Carps/microbiology , Fish Diseases/chemically induced , Fish Diseases/physiopathology , Microcystins/toxicity , Severity of Illness Index , Water Pollutants, Chemical/toxicity , Animals , Microcystis/chemistry , Seasons , Toxicity Tests
8.
Data Brief ; 38: 107299, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34458526

ABSTRACT

Transcriptome data were collected in rat dopamine cells exposed to fipronil for 24 h using microarray analysis. Fipronil is a phenylpyrazole pesticide that acts to inhibit gamma-aminobutyric acid (GABA), blocking inhibitory synaptic transmission in the central nervous system. Transcriptome data were subjected to pathway analysis and subnetwork enrichment analysis. We report that 25 µM fipronil altered transcriptional networks in dopamine-synthesizing cells that are associated with Alzheimer's Disease, Huntington Disease, and Schizophrenia. Data analysis revealed that nerve fibre degeneration, nervous system malformations, neurofibrillary tangles, and neuroinflammation were all disease processes related to the transcriptome profile observed in the rat neuronal cells. Other disease networks altered by fipronil exposure at the transcript level were associated with the mitochondria, including mitochondrial DNA depletion syndrome and mitochondrial encephalomyopathies. These data, along with those presented in Souders et al. (2021), are significant because they increase understanding into the molecular mechanisms underlying human disease following exposures to neuroactive pesticides. These data can be reused to inform adverse outcome pathways for neurotoxic pesticides.

10.
Neurotoxicology ; 85: 173-185, 2021 07.
Article in English | MEDLINE | ID: mdl-34044035

ABSTRACT

The phenylpyrazole fipronil is an insecticide that inhibits γ -amino-butyric acid (GABA) ionotropic receptors in the central nervous system. Experimental evidence suggests that fipronil acts as a neurotoxin and it is implicated in neurodegenerative diseases; however, the mechanisms of neurotoxicity are not fully elucidated. The objective of this study was to quantify mechanisms of fipronil-induced neurotoxicity in dopamine cells. Rat primary immortalized mesencephalic dopaminergic cells (N27) were treated with fipronil (0.25 up to 500 µM depending on the assay). We measured endpoints related to mitochondrial bioenergetics, mitophagy, mitochondrial membrane potential, and ATP production in addition to discerning transcriptome responses to the pesticide. Fipronil reduced cell viability at 500 µM after 24 h exposure and caspase 3/7 activity was significant increased after 6 and 12 h by 250 and 500 µM fipronil. Subsequent endpoints were thus assessed at concentrations that were below cytotoxicity. We measured oxidative respiration of N27 cells following a 24 h exposure to one dose of either 0.25, 2.5, 25, or 50 µM fipronil. Oxygen consumption rates (OCR) were not different between vehicle-control and 0.25 or 2.5 µM fipronil treatments, but there was a ∼40-60 % reduction in basal respiration, as well as reduced oligomycin-induced ATP production at 50 µM. The reduction in OCR is hypothesized to be related to lower mitochondrial mass due to mitophagy. Mitochondrial membrane potential was also sensitive to fipronil, and it was compromised at concentrations of 2.5 µM and above. To further elucidate the mechanisms linked to neurotoxicity, we conducted transcriptomics in dopamine cells following treatment with 25 µM fipronil. Fipronil suppressed transcriptional networks associated with mitochondria (damage, depolarization, permeability, and fission), consistent with its effects on mitochondrial membrane potential. Altered gene networks also included those related to Alzheimer disease, inflammatory disease, nerve fiber degeneration, and neurofibrillary tangles. This study clarifies molecular targets of fipronil-induced neurotoxicity and supports, through multiple lines of evidence, that fipronil acts as a mitochondrial toxicant in dopamine cells. This is relevant to neurodegenerative diseases like Parkinson's disease as exposure to fipronil is associated with the progressive loss of nigrostriatal dopaminergic neurons in rodents.


Subject(s)
Dopaminergic Neurons/drug effects , Insecticides/toxicity , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Mitochondria/drug effects , Pyrazoles/toxicity , Transcriptome/drug effects , Animals , Cell Line, Transformed , Cell Survival/drug effects , Cell Survival/physiology , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Mitochondria/metabolism , Rats , Transcriptome/physiology
11.
Article in English | MEDLINE | ID: mdl-33930774

ABSTRACT

Water contaminated with plastic debris and leached plasticizers can be ingested or taken up by aquatic invertebrates and vertebrates alike, exerting adverse effects on multiple tissues including the gastrointestinal tract. As such, gut microbiomes of aquatic animals are susceptible targets for toxicity. Recent studies conducted in teleost fishes report that microplastics and plasticizers (e.g., phthalates, bisphenol A) induce gastrointestinal dysbiosis and alter microbial diversity in the gastrointestinal system. Here we synthesize the current state of the science regarding plastics, plasticizers, and their effects on microbiomes of fish. Literature suggests that microplastics and plasticizers increase the abundance of opportunistic pathogenic microorganisms (e.g. Actinobacillus, Mycoplasma and Stenotrophomonas) in fish and reveal that gamma-proteobacteria are sensitive to microplastics. Recommendations moving forward for the research field include (1) environmentally relevant exposures to improve understanding of the long-term impacts of microplastic and plasticizer contamination on the fish gastrointestinal microbiome; (2) investigation into the potential impacts of understudied polymers such as polypropylene, polyamide and polyester, and (3) studies with elastomers such as rubbers that are components of tire materials, as these chemicals often dominate plastic debris. Focus on both microplastics and the gut microbiota is intensifying in environmental toxicology, and herein lies an opportunity to improve evaluation of global ecological impacts associated with plastic contamination. This is important as the microbiota is intimately tied to an individual's health and fragmentation of microbial community networks and gut dysbiosis can result in disease susceptibility and early mortality events.


Subject(s)
Ecotoxicology , Fishes/microbiology , Gastrointestinal Microbiome , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Environmental Monitoring , Fishes/growth & development
12.
Front Microbiol ; 12: 567408, 2021.
Article in English | MEDLINE | ID: mdl-33776947

ABSTRACT

Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.

13.
Chemosphere ; 274: 129623, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33515847

ABSTRACT

Various stressors including temperature, environmental chemicals, and toxins can have profound impacts on immunity to pathogens. Increased eutrophication near rivers and lakes coupled with climate change are predicted to lead to increased algal blooms. Currently, the effects of cyanobacterial toxins on disease resistance in mammals is a largely unexplored area of research. Recent studies have suggested that freshwater cyanotoxins can elicit immunomodulation through interaction with specific components of innate immunity, thus potentially altering disease susceptibility parameters for fish, wildlife, and human health owing to the conserved nature of the vertebrate immune system. In this study, we investigated the effects of three microcystin congeners (LR, LA, and RR), nodularin-R, and cylindrospermopsin for their ability to directly interact with nine different human Toll-like receptors (TLRs)-key pathogen recognition receptors for innate immunity. Toxin concentrations were verified by LC/MS/MS prior to use. Using an established HEK293-hTLR NF-κB reporter assay, we concluded that none of the tested toxins (29-90 nM final concentration) directly interacted with human TLRs in either an agonistic or antagonistic manner. These results suggest that earlier reports of cyanotoxin-induced NF-κB responses likely occur through different surface receptors to mediate inflammation.


Subject(s)
Microcystins , Tandem Mass Spectrometry , Alkaloids , Animals , Cyanobacteria Toxins , HEK293 Cells , Humans , Microcystins/toxicity , Peptides, Cyclic , Toll-Like Receptors/genetics
14.
Environ Pollut ; 268(Pt B): 115715, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33069042

ABSTRACT

Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]-cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.


Subject(s)
Microbiota , Selenium , Animals , Dieldrin/toxicity , Gastrointestinal Tract , Heme , Male , RNA, Ribosomal, 16S , Zebrafish
15.
Sci Total Environ ; 764: 142319, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33069479

ABSTRACT

Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 µg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.


Subject(s)
Microcystis , Animal Feed , Animals , Biomass , Eutrophication , Humans , Microcystins/metabolism , Microcystis/metabolism , Oxidative Stress
16.
Environ Sci Technol ; 54(9): 5719-5728, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32255618

ABSTRACT

To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Adaptive Immunity , Animals , Female , Humans , Male , Zebrafish
17.
Environ Pollut ; 262: 114291, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32146360

ABSTRACT

Benzotriazole ultraviolet stabilizers (BUVSs) are widely used additives in industrial materials and personal care products that protect products from ultraviolet damage. Due to their high production volume and potential to bioaccumulate, BUVSs are an environmental pollutant of concern. In this study, juvenile zebrafish (Danio rerio) were exposed to 4 BUVSs (UV-234, UV-326, UV-329, and UV-P) at 10 and 100 µg/L for 28 d. BUVSs induced hepatic vacuolization and nuclei pyknosis in the liver following 100 µg/L UV-234 and UV-329 exposure. Transcriptomic analysis in the liver uncovered pathways related to inflammation that were affected by BUVSs. Based upon these data, we measured the expression levels of 9 genes involved in AHR-IL17/IL22 pathway in zebrafish larvae exposed to each BUVSs at one dose of either 10 or 100 µg/L for 6 days in a second set experiment. Transcript levels of interleukins il17a and il22 were decreased, while il6 mRNA was increased with exposure to UV-234, UV-329, and UV-P. No change to targeted transcripts was observed with UV-326 treatments. Moreover, cyp1a1 and ahr2 levels were increased in larvae treated with 100 µg/L UV-329 or UV-P. Consistent with expression data, protein abundance of IL22 was decreased by 29% with exposure to 100 µg/L UV-P. Taken together, these results demonstrate that exposure to different benzotriazole congeners may be associated with immunotoxicity in zebrafish through the AHR-IL17/IL22 pathway, and this may be associated with hepatic damage with prolonged exposures. This study provides new insight into unique pathways perturbed by specific BUVSs congeners.


Subject(s)
Ultraviolet Rays , Zebrafish , Animals , Larva , Triazoles
18.
Anal Bioanal Chem ; 411(20): 5267-5275, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31129692

ABSTRACT

Microcystins are cyclic peptide toxins with hepatotoxic and tumor-promoting properties, which are produced in significant quantities (up to tens of µg/L) in freshwater cyanobacterial water blooms. Several studies reported microcystin accumulation in fish with possible food transfer to humans. These compounds are further metabolized to cysteine and glutathione conjugates which can be present in tissues in significant concentrations. In this study, we focused on the development and evaluation of robust and highly sensitive SPE-LC-MS/MS method for the analysis of microcystin conjugates in fish tissue samples. For the first time, we demonstrate the use of isotopically labeled internal standards which are essential for accurate and precise determination of analytes in complex biotic matrices. LLOQs of respective microcystin conjugates (signal-to-noise ratio; S/N > 10, peak-to-peak method) ranged from 3.3 to 5.0 ng/g of tissue fresh weight (FW). The calibration was linear within a range of concentrations from 1 to 70 ng/mL for all analyzed conjugates. The precision and repeatability of the method were very good with recoveries in the range of 88.5-107.6% and relative standard deviations between 8.8 and 13.2% for all analytes. In the follow-up study, fully validated method was used for the determination of microcystin conjugate levels in common carp exposed to microcystin-containing cyanobacterial biomass under controlled conditions. Significant amounts of microcystin conjugates (up to 55 ng/g) were found in the tissues of fish after 7 weeks of exposure. Our method was shown to be robust, sensitive, selective, and suitable for the determination of trace levels of microcystin conjugates in fish tissues.


Subject(s)
Chromatography, Liquid/methods , Cyanobacteria/chemistry , Cysteine/analysis , Glutathione/analysis , Microcystins/analysis , Tandem Mass Spectrometry/methods , Biomass , Limit of Detection , Microcystins/chemistry , Radioisotope Dilution Technique , Reproducibility of Results
19.
Chemosphere ; 226: 439-446, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30951938

ABSTRACT

Cylindrospermopsin (CYN), a cyanobacterial toxin, is an important water pollutant with broad biological activity. It has been known mainly from tropical areas, but the area of occurrence of its producers is spreading to temperate climates. It can be found in high concentrations in the environment as well as in purified drinking waters. The aim of the study is to bring a basic information on the ability of CYN to interfere with mammalian innate immunity cells and thus increase the understanding of the immunomodulatory potency of CYN. This study investigated whether immune cells can be a target of CYN either alone or in combination with a model immunomodulatory agent, lipopolysaccharide (LPS). We examined the effects on cellular viability and inflammation signaling of CYN on murine macrophage-like RAW 264.7 cells. Macrophages were treated either with pure toxin (1 µM) or together with a known stimulator of immunologically active cells, bacterial or cyanobacterial LPS. CYN has had a significant effect on production on pro-inflammatory mediator tumor necrosis factor α (TNF-α) which correlates with its effect on reactive oxygen species (ROS) production. We found that CYN potentiated the effect of bacterial and cyanobacterial LPS that was documented by activation of inflammatory signaling pathways including mitogen-activated protein kinase p38 as well as consequent expression of inducible nitric oxide synthase (iNOS) and increased production of pro-inflammatory mediators such as nitric oxide (NO), TNF-α, interleukin-6 (IL-6). Our study brings one of the first information that contributes to the elucidation of immunomodulatory role of CYN in macrophages under normal and pro-inflammatory conditions.


Subject(s)
Bacterial Toxins/immunology , Immunity, Innate/immunology , Immunomodulation/genetics , Macrophages/drug effects , Marine Toxins/immunology , Microcystins/immunology , Uracil/analogs & derivatives , Alkaloids , Animals , Cyanobacteria Toxins , Mice , Signal Transduction , Uracil/immunology
20.
Chemosphere ; 214: 303-313, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30265938

ABSTRACT

Ziram is a broad spectrum pesticide that belongs to the class of dimethyl-dithiocarbamate (DTC) fungicides. The objectives of this study were to assess the effects of ziram in developing zebrafish. Ziram was highly toxic to zebrafish embryos, with a 96-h LC50 value of 1082.54 nM (∼0.33 mg/L). Zebrafish embryos at 6 h post-fertilization (hpf) were exposed to solvent control (0.1% DMSO), or one dose of 1, 10, 100, and 1000 nM ziram for 96 h. Ziram induced lethality in a dose-dependent manner, decreased hatching rate and heartbeat, and caused wavy deformities at 72 and 96 hpf at 100 and 1000 nM. Basal oxygen consumption rates of zebrafish at 24 hpf were decreased with 1000 nM, suggesting that ziram affects oxidative phosphorylation. We also measured the expression of transcripts associated with the oxidative stress response (sod1 and sod2) and dopamine receptor signaling at ∼96 h of exposure. There was no difference in the expression of genes related to oxidative stress, nor those related to the dopamine system. Locomotor activity was also assessed in larval zebrafish (7 dpf), and ziram increased total activity, the velocity in light zone, and total distance moved at 10 nM, while it decreased the mean time spent in the dark zone at 1 and 10 nM. Behavioral responses were dependent upon the time point and clutch examined. These data demonstrate that ziram negatively impacts embryonic development (i.e. mortality, hatching, heartbeat and notochord development) of zebrafish, decreases basal respiration of embryos, and alters behavioral responses in larvae.


Subject(s)
Embryonic Development/drug effects , Zebrafish/growth & development , Ziram/toxicity , Animals , Behavior, Animal/drug effects , Dopamine/genetics , Embryo, Nonmammalian/drug effects , Fungicides, Industrial/metabolism , Fungicides, Industrial/toxicity , Larva/drug effects , Locomotion/drug effects , Oxidative Stress/genetics , Oxygen Consumption/drug effects , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...