Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Stem Cells ; 42(6): 526-539, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38563224

ABSTRACT

To resist lineage-dependent therapies such as androgen receptor inhibition, prostate luminal epithelial adenocarcinoma cells often adopt a stem-like state resulting in lineage plasticity and phenotypic heterogeneity. Castrate-resistant prostate adenocarcinoma can transition to neuroendocrine (NE) and occasionally to amphicrine, co-expressed luminal and NE, phenotypes. We developed castrate-resistant prostate cancer (CRPC) patient-derived organoid models that preserve heterogeneity of the originating tumor, including an amphicrine model displaying a range of luminal and NE phenotypes. To gain biological insight and to identify potential treatment targets within heterogeneous tumor cell populations, we assessed the lineage hierarchy and molecular characteristics of various CRPC tumor subpopulations. Transcriptionally similar stem/progenitor (St/Pr) cells were identified for all lineage populations. Lineage tracing in amphicrine CRPC showed that heterogeneity originated from distinct subclones of infrequent St/Pr cells that produced mainly quiescent differentiated amphicrine progeny. By contrast, adenocarcinoma CRPC progeny originated from St/Pr cells and self-renewing differentiated luminal cells. Neuroendocrine prostate cancer (NEPC) was composed almost exclusively of self-renewing St/Pr cells. Amphicrine subpopulations were enriched for secretory luminal, mesenchymal, and enzalutamide treatment persistent signatures that characterize clinical progression. Finally, the amphicrine St/Pr subpopulation was specifically depleted with an AURKA inhibitor, which blocked tumor growth. These data illuminate distinct stem cell (SC) characteristics for subtype-specific CRPC in addition to demonstrating a context for targeting differentiation-competent prostate SCs.


Subject(s)
Cell Lineage , Neoplastic Stem Cells , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Cell Lineage/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Animals , Cell Differentiation , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Mice , Benzamides , Nitriles
2.
J Clin Invest ; 133(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37725435

ABSTRACT

Antibody-drug conjugates (ADCs) are a promising targeted cancer therapy; however, patient selection based solely on target antigen expression without consideration for cytotoxic payload vulnerabilities has plateaued clinical benefits. Biomarkers to capture patients who might benefit from specific ADCs have not been systematically determined for any cancer. We present a comprehensive therapeutic and biomarker analysis of a B7H3-ADC with pyrrolobenzodiazepine(PBD) payload in 26 treatment-resistant, metastatic prostate cancer (mPC) models. B7H3 is a tumor-specific surface protein widely expressed in mPC, and PBD is a DNA cross-linking agent. B7H3 expression was necessary but not sufficient for B7H3-PBD-ADC responsiveness. RB1 deficiency and/or replication stress, characteristics of poor prognosis, and conferred sensitivity were associated with complete tumor regression in both neuroendocrine (NEPC) and androgen receptor positive (ARPC) prostate cancer models, even with low B7H3 levels. Non-ARPC models, which are currently lacking efficacious treatment, demonstrated the highest replication stress and were most sensitive to treatment. In RB1 WT ARPC tumors, SLFN11 expression or select DNA repair mutations in SLFN11 nonexpressors governed response. Importantly, WT TP53 predicted nonresponsiveness (7 of 8 models). Overall, biomarker-focused selection of models led to high efficacy of in vivo treatment. These data enable a paradigm shift to biomarker-driven trial designs for maximizing clinical benefit of ADC therapies.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Prostatic Neoplasms , Male , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Biomarkers, Tumor/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Nuclear Proteins
3.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37183816

ABSTRACT

Organoid technology has provided new translational research opportunities in oncology, in part by enabling the development of patient-representative living biobanks. Prostate cancer research historically has been constrained to a small number of in vitro models, limiting the ability to translate experimental conclusions for contemporary, heterogeneous patient populations. The facility of organoid culture methods to maintain luminal prostate epithelia, the common lineage of prostate cancers, has greatly expanded the phenotypic and genotypic diversity of available tractable models, including luminal stem/progenitor cells and progressive patient-derived cancers. Biobanks of patient prostate cancer organoids enable increased accuracy in predicting therapeutic efficacy and informative clinical trial designs. Here, we discuss how prostate organoid technology is currently being used, the promising areas of future therapeutic applications, and the current obstacles to be overcome.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Translational Research, Biomedical , Prostatic Neoplasms/genetics , Organoids , Genotype
4.
Discov Oncol ; 13(1): 97, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181613

ABSTRACT

BACKGROUND: The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS: Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS: Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.

5.
Nat Commun ; 12(1): 1979, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33785741

ABSTRACT

Lineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens. Here, we investigate the epigenomic basis of this resistance mechanism by profiling histone modifications in NEPC and PRAD patient-derived xenografts (PDXs) using chromatin immunoprecipitation and sequencing (ChIP-seq). We identify a vast network of cis-regulatory elements (N~15,000) that are recurrently activated in NEPC. The FOXA1 transcription factor (TF), which pioneers androgen receptor (AR) chromatin binding in the prostate epithelium, is reprogrammed to NE-specific regulatory elements in NEPC. Despite loss of dependence upon AR, NEPC maintains FOXA1 expression and requires FOXA1 for proliferation and expression of NE lineage-defining genes. Ectopic expression of the NE lineage TFs ASCL1 and NKX2-1 in PRAD cells reprograms FOXA1 to bind to NE regulatory elements and induces enhancer activity as evidenced by histone modifications at these sites. Our data establish the importance of FOXA1 in NEPC and provide a principled approach to identifying cancer dependencies through epigenomic profiling.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/genetics , Neuroendocrine Tumors/genetics , Prostatic Neoplasms/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/therapy , Animals , Cell Line, Tumor , Disease Progression , Epigenomics/methods , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Male , Mutation , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/therapy , RNA Interference , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
6.
Mol Cancer Ther ; 19(7): 1436-1447, 2020 07.
Article in English | MEDLINE | ID: mdl-32371590

ABSTRACT

The PI3K-AKT pathway has pleiotropic effects and its inhibition has long been of interest in the management of prostate cancer, where a compensatory increase in PI3K signaling has been reported following androgen receptor (AR) blockade. Prostate cancer cells can also bypass AR blockade through induction of other hormone receptors, in particular the glucocorticoid receptor (GR). Here we demonstrate that AKT inhibition significantly decreases cell proliferation through both cytostatic and cytotoxic effects. The cytotoxic effect is enhanced by AR inhibition and is most pronounced in models that induce compensatory GR expression. AKT inhibition increases canonical AR activity and remodels the chromatin landscape, decreasing enhancer interaction at the GR gene (NR3C1) locus. Importantly, it blocks induction of GR expression and activity following AR blockade. This is confirmed in multiple in vivo models, where AKT inhibition of established xenografts leads to increased canonical AR activity, decreased GR expression, and marked antitumor activity. Overall, our results demonstrate that inhibition of the PI3K/AKT pathway can block GR activity and overcome GR-mediated resistance to AR-targeted therapy. Ipatasertib is currently in clinical development, and GR induction may be a biomarker to identify responsive patients or a responsive disease state.


Subject(s)
Benzamides/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Piperazines/pharmacology , Prostatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Receptors, Glucocorticoid/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , Humans , Male , Mice , Phosphatidylinositol 3-Kinases/chemistry , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Glucocorticoid/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Oncogene ; 38(35): 6241-6255, 2019 08.
Article in English | MEDLINE | ID: mdl-31312026

ABSTRACT

Early growth response-1 (EGR1) is a transcription factor correlated with prostate cancer (PC) progression in a variety of contexts. For example, EGR1 levels increase in response to suppressed androgen receptor signaling or loss of the tumor suppressor, PTEN. EGR1 has been shown to regulate genes influencing proliferation, apoptosis, immune cell activation, and matrix degradation, among others. Despite this, the impact of EGR1 on PC metastatic colonization is unclear. We demonstrate using a PC model (DU145/RasB1) of bone and brain metastasis that EGR1 expression regulates angiogenic and osteoclastogenic properties of metastases. We have shown previously that FN14 (TNFRSF12A) and downstream NF-κB signaling is required for metastasis in this model. Here we demonstrate that FN14 ligation also leads to NF-κB-independent, MEK-dependent EGR1 expression. EGR1-depletion in DU145/RasB1 cells reduced both the number and size of metastases but did not affect primary tumor growth. Decreased EGR1 expression led to reduced blood vessel density in brain and bone metastases as well as decreased osteolytic bone lesion area and reduced numbers of osteoclasts at the bone-tumor interface. TWEAK (TNFSF12) induced several EGR1-dependent angiogenic and osteoclastogenic factors (e.g., PDGFA, TGFB1, SPP1, IL6, IL8, and TGFA, among others). Consistent with this, in clinical samples of PC, the level of several genes encoding angiogenic/osteoclastogenic pathway effectors correlated with EGR1 levels. Thus, we show here that EGR1 has a direct effect on prostate cancer metastases. EGR1 regulates angiogenic and osteoclastogenic factors, informing the underlying signaling networks that impact autonomous and microenvironmental mechanisms of cancer metastases.


Subject(s)
Adenocarcinoma/pathology , Early Growth Response Protein 1/physiology , Neovascularization, Pathologic/genetics , Osteogenesis/genetics , Prostatic Neoplasms/pathology , Adenocarcinoma/blood supply , Adenocarcinoma/genetics , Animals , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Early Growth Response Protein 1/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoplasm Metastasis , Neovascularization, Pathologic/pathology , PC-3 Cells , Prostatic Neoplasms/blood supply , Prostatic Neoplasms/genetics , RAW 264.7 Cells , Signal Transduction/genetics , Tumor Cells, Cultured , Tumor Microenvironment/genetics
8.
Sci Rep ; 8(1): 17239, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30467317

ABSTRACT

The development of new treatments for castrate resistant prostate cancer (CRPC) must address such challenges as intrinsic tumor heterogeneity and phenotypic plasticity. Combined PTEN/TP53 alterations represent a major genotype of CRPC (25-30%) and are associated with poor outcomes. Using tumor-derived, castration-resistant Pten/Tp53 null luminal prostate cells for comprehensive, high-throughput, mechanism-based screening, we identified several vulnerabilities among >1900 compounds, including inhibitors of: PI3K/AKT/mTOR, the proteasome, the cell cycle, heat shock proteins, DNA repair, NFκB, MAPK, and epigenetic modifiers. HSP90 inhibitors were one of the most active compound classes in the screen and have clinical potential for use in drug combinations to enhance efficacy and delay the development of resistance. To inform future design of rational drug combinations, we tested ganetespib, a potent second-generation HSP90 inhibitor, as a single agent in multiple CRPC genotypes and phenotypes. Ganetespib decreased growth of endogenous Pten/Tp53 null tumors, confirming therapeutic activity in situ. Fifteen human CRPC LuCaP PDX-derived organoid models were assayed for responses to 110 drugs, and HSP90 inhibitors (ganetespib and onalespib) were among the select group of drugs (<10%) that demonstrated broad activity (>75% of models) at high potency (IC50 <1 µM). Ganetespib inhibits multiple targets, including AR and PI3K pathways, which regulate mutually compensatory growth and survival signals in some forms of CRPC. Combined with castration, ganetespib displayed deeper PDX tumor regressions and delayed castration resistance relative to either monotherapy. In all, comprehensive data from near-patient models presents novel contexts for HSP90 inhibition in multiple CRPC genotypes and phenotypes, expands upon HSP90 inhibitors as simultaneous inhibitors of oncogenic signaling and resistance mechanisms, and suggests utility for combined HSP90/AR inhibition in CRPC.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Androgen Receptor Antagonists/pharmacology , Animals , Benzamides/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Genotype , High-Throughput Screening Assays/methods , Humans , Isoindoles/pharmacology , Male , Mice , PTEN Phosphohydrolase/metabolism , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Prostate/drug effects , Prostate/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Triazoles/pharmacology , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays/methods
9.
Clin Cancer Res ; 24(17): 4332-4345, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29748182

ABSTRACT

Purpose: Prostate cancer translational research has been hampered by the lack of comprehensive and tractable models that represent the genomic landscape of clinical disease. Metastatic castrate-resistant prostate cancer (mCRPC) patient-derived xenografts (PDXs) recapitulate the genetic and phenotypic diversity of the disease. We sought to establish a representative, preclinical platform of PDX-derived organoids that is experimentally facile for high-throughput and mechanistic analysis.Experimental Design: Using 20 models from the LuCaP mCRPC PDX cohort, including adenocarcinoma and neuroendocrine lineages, we systematically tested >20 modifications to prostate organoid conditions. Organoids were evaluated for genomic and phenotypic stability and continued reliance on the AR signaling pathway. The utility of the platform as a genotype-dependent model of drug sensitivity was tested with olaparib and carboplatin.Results: All PDX models proliferated as organoids in culture. Greater than 50% could be continuously cultured long-term in modified conditions; however, none of the PDXs could be established long-term as organoids under previously reported conditions. In addition, the modified conditions improved the establishment of patient biopsies over current methods. The genomic heterogeneity of the PDXs was conserved in organoids. Lineage markers and transcriptomes were maintained between PDXs and organoids. Dependence on AR signaling was preserved in adenocarcinoma organoids, replicating a dominant characteristic of CRPC. Finally, we observed maximum cytotoxicity to the PARP inhibitor olaparib in BRCA2-/- organoids, similar to responses observed in patients.Conclusions: The LuCaP PDX/organoid models provide an expansive, genetically characterized platform to investigate the mechanisms of pathogenesis as well as therapeutic responses and their molecular correlates in mCRPC. Clin Cancer Res; 24(17); 4332-45. ©2018 AACR.


Subject(s)
Biological Specimen Banks , Organoids , Prostatic Neoplasms/genetics , Animals , Cell Lineage/genetics , Genetic Heterogeneity , Genotype , Heterografts , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology
10.
Oncotarget ; 8(44): 77181-77194, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100379

ABSTRACT

Advanced prostate cancer (PrCa) is treated with androgen deprivation therapy, and although there is usually a significant initial response, recurrence arises as castrate resistant prostate cancer (CRPC). New approaches are needed to treat this genetically heterogeneous, phenotypically plastic disease. CRPC with combined homozygous alterations to PTEN and TP53 comprise about 30% of clinical samples. We screened eleven traditional Chinese medicines against a panel of androgen-independent Pten/Tp53 null PrCa-derived cell lines and identified gambogic acid (GA) as a highly potent growth inhibitor. Mechanistic analyses revealed that GA disrupted cellular redox homeostasis, observed as elevated reactive oxygen species (ROS), leading to apoptotic and ferroptotic death. Consistent with this, we determined that GA inhibited thioredoxin, a necessary component of cellular anti-oxidative, protein-reducing activity. In other clinically relevant models, GA displayed submicromolar, growth inhibitory activity against a number of genomically-representative, CRPC patient derived xenograft organoid cultures. Inhibition of ROS with N-acetyl-cysteine partially reversed growth inhibition in CRPC organoids, demonstrating ROS imbalance and implying that GA may have additional mechanisms of action. These data suggest that redox imbalances initiated by GA may be useful, especially in combination therapies, for treating the heterogeneity and plasticity that contributes to the therapeutic resistance of CRPC.

11.
Cell Rep ; 13(10): 2147-58, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26628377

ABSTRACT

Primary prostate cancer almost always has a luminal phenotype. However, little is known about the stem/progenitor properties of transformed cells within tumors. Using the aggressive Pten/Tp53-null mouse model of prostate cancer, we show that two classes of luminal progenitors exist within a tumor. Not only did tumors contain previously described multipotent progenitors, but also a major population of committed luminal progenitors. Luminal cells, sorted directly from tumors or grown as organoids, initiated tumors of adenocarcinoma or multilineage histological phenotypes, which is consistent with luminal and multipotent differentiation potentials, respectively. Moreover, using organoids we show that the ability of luminal-committed progenitors to self-renew is a tumor-specific property, absent in benign luminal cells. Finally, a significant fraction of luminal progenitors survived in vivo castration. In all, these data reveal two luminal tumor populations with different stem/progenitor cell capacities, providing insight into prostate cancer cells that initiate tumors and can influence treatment response.


Subject(s)
Adenocarcinoma/pathology , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , Animals , Cell Lineage , Cell Separation , Disease Models, Animal , Epithelial Cells/pathology , Flow Cytometry , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Organoids , Phenotype
12.
PLoS One ; 8(10): e77299, 2013.
Article in English | MEDLINE | ID: mdl-24143218

ABSTRACT

Using a GWA analysis of a comprehensive glioma specimen population, we identified whole gain of chromosome 19 as one of the major chromosomal aberrations that correlates to patients' outcomes. Our analysis of significant loci revealed for the first time NOTCH3 as one of the most significant amplification. NOTCH3 amplification is associated with worse outcome compared to tumors with non-amplified locus. NOTCH receptors (NOTCH1-4) are key positive regulators of cell-cell interactions, angiogenesis, cell adhesion and stem cell niche development which have been shown to play critical roles in several human cancers. Our objective is to determine the molecular roles of NOTCH3 in glioma pathogenesis and aggressiveness. Here we show for the first time that NOTCH3 plays a major role in glioma cell proliferation, cell migration, invasion and apoptosis. Therefore, our study uncovers the prognostic value and the oncogenic function of NOTCH3 in gliomagenesis and supports NOTCH3 as a promising target of therapy in high grade glioma. Our studies allowed the identification of a subset of population that may benefit from GSI- or anti-NOTCH3- based therapies. This may lead to the design of novel strategies to improve therapeutic outcome of patients with glioma by establishing medical and scientific basis for personalized chemotherapies.


Subject(s)
Cell Movement , Cyclin D1/metabolism , ErbB Receptors/metabolism , Glioma/pathology , Receptors, Notch/metabolism , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Gene Knockdown Techniques , Glioma/diagnosis , Glioma/genetics , Humans , Neoplasm Grading , Neoplasm Invasiveness , Oncogenes/genetics , Prognosis , Receptor, Notch3 , Receptors, Notch/deficiency , Receptors, Notch/genetics
13.
PLoS One ; 8(5): e62852, 2013.
Article in English | MEDLINE | ID: mdl-23696788

ABSTRACT

Poor prognosis and resistance to therapy in malignant gliomas is mainly due to the highly dispersive nature of glioma cells. This dispersive characteristic results from genetic alterations in key regulators of cell migration and diffusion. A better understanding of these regulatory signals holds promise to improve overall survival and response to therapy. Using mapping arrays to screen for genomic alterations in gliomas, we recently identified alterations of the protein tyrosine phosphatase receptor type kappa gene (PTPRK) that correlate to patient outcomes. These PTPRK alterations are very relevant to glioma biology as PTPRK can directly sense cell-cell contact and is a dephosphorylation regulator of tyrosine phosphorylation signaling, which is a major driving force behind tumor development and progression. Subsequent sequencing of the full length PTPRK transcripts revealed novel PTPRK gene deletion and missense mutations in numerous glioma biopsies. PTPRK mutations were cloned and expressed in PTPRK-null malignant glioma cells. The effect of these mutations on PTPRK anti-oncogenic function and their association with response to anti-glioma therapeutics, such as temozolomide and tyrosine kinase inhibitors, was subsequently analyzed using in vitro cell-based assays. These genetic variations altered PTPRK activity and its post-translational processing. Reconstitution of wild-type PTPRK in malignant glioma cell lines suppressed cell growth and migration by inhibiting EGFR and ß-catenin signaling and improved the effect of conventional therapies for glioma. However, PTPRK mutations abrogated tumor suppressive effects of wild-type PTPRK and altered sensitivity of glioma cells to chemotherapy.


Subject(s)
Glioma/enzymology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Enzyme Inhibitors/pharmacology , Glioma/genetics , Humans , Mutation , Receptor-Like Protein Tyrosine Phosphatases, Class 2/antagonists & inhibitors , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Temozolomide
14.
OMICS ; 16(3): 113-22, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22401657

ABSTRACT

Malignant gliomas are the most frequent type of primary brain tumors. Patients' outcome has not improved despite new therapeutics, thus underscoring the need for a better understanding of their genetics and a fresh approach to treatment. The lack of reproducibility in the classification of many gliomas presents an opportunity where genomics may be paramount for accurate diagnosis and therefore best for therapeutic decisions. The aim of this work is to identify large and focal copy number abnormalities (CNA) and loss of heterozygosity (LOH) events in a malignant glioma population. We hypothesized that these explorations will allow discovery of genetic markers that may improve diagnosis and predict outcome. DNA from glioma specimens were subjected to CNA and LOH analyses. Our studies revealed more than 4000 CNA and several LOH loci. Losses of chromosomes 1p and/or 19q, 10, 13, 14, and 22 and gains of 7, 19, and 20 were found. Several of these alterations correlated significantly with histology and grade. Further, LOH was detected at numerous chromosomes. Interestingly, several of these loci harbor genes with potential or reported tumor suppressor properties. These novel genetic signatures may lead to critical insights into diagnosis, classification, prognosis, and design of individualized therapies.


Subject(s)
Genomics/methods , Glioma/diagnosis , Glioma/genetics , Female , Glioma/pathology , Humans , In Vitro Techniques , Loss of Heterozygosity , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...