Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(49): 24830-24839, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31748267

ABSTRACT

Severe locomotor impairment is a common phenotype of neurodegenerative disorders such as Parkinson's disease (PD). Drosophila models of PD, studied for more than a decade, have helped in understanding the interaction between various genetic factors, such as parkin and PINK1, in this disease. To characterize locomotor behavioral phenotypes for these genes, fly climbing assays have been widely used. While these simple current assays for locomotor defects in Drosophila mutants measure some locomotor phenotypes well, it is possible that detection of subtle changes in behavior is important to understand the manifestation of locomotor disorders. We introduce a climbing behavior assay which provides such fine-scale behavioral data and tests this proposition for the Drosophila model. We use this inexpensive, fully automated assay to quantitatively characterize the climbing behavior at high parametric resolution in 3 contexts. First, we characterize wild-type flies and uncover a hitherto unknown sexual dimorphism in climbing behavior. Second, we study climbing behavior of heterozygous mutants of genes implicated in the fly PD model and reveal previously unreported prominent locomotor defects in some of these heterozygous fly lines. Finally, we study locomotor defects in a homozygous proprioceptory mutation (Trp-γ1 ) known to affect fine motor control in Drosophila Moreover, we identify aberrant geotactic behavior in Trp-γ1 mutants, thereby opening up a finer assay for geotaxis and its genetic basis. Our assay is therefore a cost-effective, general tool for measuring locomotor behaviors of wild-type and mutant flies in fine detail and can reveal subtle motor defects.


Subject(s)
Behavior Observation Techniques/methods , Behavior, Animal/physiology , Locomotion/genetics , Parkinson Disease/genetics , Proprioception/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Female , Heterozygote , Homozygote , Humans , Male , Parkinson Disease/physiopathology , Protein Serine-Threonine Kinases/genetics , Sensitivity and Specificity , Sex Characteristics , Transient Receptor Potential Channels/genetics , Ubiquitin-Protein Ligases/genetics
2.
Open Biol ; 9(6): 190087, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31238820

ABSTRACT

Indirect flight muscles (IFMs) in adult Drosophila provide the key power stroke for wing beating. They also serve as a valuable model for studying muscle development. An age-dependent decline in Drosophila free flight has been documented, but its relation to gross muscle structure has not yet been explored satisfactorily. Such analyses are impeded by conventional histological preparations and imaging techniques that limit exact morphometry of flight muscles. In this study, we employ microCT scanning on a tissue preparation that retains muscle morphology under homeostatic conditions. Focusing on a subset of IFMs called the dorsal longitudinal muscles (DLMs), we find that DLM volumes increase with age, partially due to the increased separation between myofibrillar fascicles, in a sex-dependent manner. We have uncovered and quantified asymmetry in the size of these muscles on either side of the longitudinal midline. Measurements of this resolution and scale make substantive studies that test the connection between form and function possible. We also demonstrate the application of this method to other insect species making it a valuable tool for histological analysis of insect biodiversity.


Subject(s)
Drosophila/physiology , Muscle, Skeletal/anatomy & histology , Aging/physiology , Animals , Drosophila/anatomy & histology , Female , Male , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Wings, Animal/anatomy & histology , Wings, Animal/diagnostic imaging , Wings, Animal/physiology , X-Ray Microtomography
4.
PLoS Genet ; 9(4): e1003452, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23637622

ABSTRACT

Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn). The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffuse neuromodulatory role. A closer examination, however, reveals a restricted pattern of the CSDn arborization in some glomeruli. We show that sensory neuron-derived Eph interacts with Ephrin in the CSDn, to regulate these arborizations. Behavioural analysis of animals with altered Eph-ephrin signaling and with consequent arborization defects suggests that neuromodulation requires local glomerular-specific patterning of the CSDn termini. Our results show the importance of developmental regulation of terminal arborization of even the diffuse modulatory neurons to allow them to route sensory-inputs according to the behavioural contexts.


Subject(s)
Olfactory Receptor Neurons , Serotonergic Neurons , Animals , Odorants , Olfactory Pathways , Sensory Receptor Cells , Serotonin
5.
J Neurosci ; 32(40): 13819-40, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-23035093

ABSTRACT

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.


Subject(s)
Calcium Signaling , Fluorescent Dyes/chemistry , Fluorometry/methods , Green Fluorescent Proteins/chemistry , Neuroimaging/methods , Neurons/chemistry , Peptides/chemistry , Synaptic Transmission , Animals , Astrocytes/chemistry , Astrocytes/ultrastructure , Caenorhabditis elegans , Crystallography, X-Ray , Drosophila melanogaster/growth & development , Female , Fluorescent Dyes/analysis , Genes, Synthetic , Genetic Vectors , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/isolation & purification , HEK293 Cells/chemistry , HEK293 Cells/ultrastructure , Hippocampus/chemistry , Hippocampus/cytology , Humans , Larva , Lasers , Mice , Models, Molecular , Mutagenesis, Site-Directed , Neuromuscular Junction/chemistry , Neuromuscular Junction/ultrastructure , Neurons/physiology , Neurons/ultrastructure , Neuropil/chemistry , Neuropil/physiology , Neuropil/ultrastructure , Olfactory Receptor Neurons/chemistry , Olfactory Receptor Neurons/physiology , Olfactory Receptor Neurons/ultrastructure , Peptides/analysis , Peptides/genetics , Photic Stimulation , Protein Conformation , Rats , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Retinal Bipolar Cells/chemistry , Retinal Bipolar Cells/physiology , Retinal Bipolar Cells/ultrastructure , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL