Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
J Fluoresc ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954082

ABSTRACT

The current study looks into the characterization and differentiation of mango juices that are sold commercially using fluorescence spectroscopy. The emission spectra displayed well-defined and prominent peaks that suggested the existence of many fluorophores, such as water content, ß-carotene, tartrazine food color, and chlorophyll components. For this study, water and yellow food coloring solution, the two most popular adulterants were added to pure and authenticated mango pulp that had been diluted to an 8% concentration. The fluorophore profile of the samples was ascertained by using multivariate analysis (principal component analysis) in conjunction with fluorescence spectroscopy. The findings showed that the existence of water content is directly correlated with the spectral bands at 444 and 467 nm, and for food color at 580 nm thus the best indicators to detect adulteration of high water contents and food color. Chlorophyll and ß-carotene intensities varied among juices, acting as a discriminant marker to distinguish between those with unripened pulp (high chlorophyll intensity) and those with more water and other pigments (lower chlorophyll and ß-carotene intensities). With fluorescence emission spectroscopy, qualitative assessment of mango juice can be quickly determined by spectral features, providing details on composition and quality.

2.
Heliyon ; 10(12): e32749, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988515

ABSTRACT

The construction industry consumes significant resources, emits considerable pollutants, and generates substantial waste. Green, Lean, Six Sigma (GLS) is an emerging paradigm to control waste, carbon footprint, resource conservation, non-value-added activities, and cost. However, limited focus has been given to the risks involved in GLS construction projects (GLSCPs). This research explored risk factors (RFs) to GLSCPs based on literature review and expert judgments. Brainstorming sessions were conducted to validate the RFs and establish mutual interactions among them through experts' opinions. A 4-level structural model was extracted through Interpretive structural modeling (ISM). The Matriced Impacts Croise's Multiplication Appliqée a UN Classement (MICMAC) was integrated to assess the 'driving' and 'dependence' power of the RFs. The results show that all RFs are crucial and impact GLSCPs, but the most critical are 'unstable inflation,' 'fluctuations in interest rate,' and 'fluctuations in exchange rate.' This study enhances managers' and policymakers' understanding of RFs associated with GLSCPs and supports effective risk management for successful GLS implementation in construction projects.

3.
BMC Plant Biol ; 24(1): 564, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879470

ABSTRACT

BACKGROUND: Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS: In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS: The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.


Subject(s)
Cucumis sativus , Gene Expression Regulation, Plant , Multigene Family , Plant Growth Regulators , Plant Proteins , Stress, Physiological , Cucumis sativus/genetics , Cucumis sativus/physiology , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Evolution, Molecular , Phylogeny , Genes, Plant
4.
Sci Rep ; 14(1): 13839, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879689

ABSTRACT

With the urge to secure and protect digital assets, there is a need to emphasize the immediacy of taking measures to ensure robust security due to the enhancement of cyber security. Different advanced methods, like encryption schemes, are vulnerable to putting constraints on attacks. To encode the digital data and utilize the unique properties of DNA, like stability and durability, synthetic DNA sequences are offered as a promising alternative by DNA encoding schemes. This study enlightens the exploration of DNA's potential for encoding in evolving cyber security. Based on the systematic literature review, this paper provides a discussion on the challenges, pros, and directions for future work. We analyzed the current trends and new innovations in methodology, security attacks, the implementation of tools, and different metrics to measure. Various tools, such as Mathematica, MATLAB, NIST test suite, and Coludsim, were employed to evaluate the performance of the proposed method and obtain results. By identifying the strengths and limitations of proposed methods, the study highlights research challenges and offers future scope for investigation.


Subject(s)
Computer Security , DNA , DNA/genetics , Humans , Algorithms
5.
Foods ; 13(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38890908

ABSTRACT

The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.

6.
Polymers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891415

ABSTRACT

Natural rubber (NR) is utilized in more than 40,000 products, and the demand for NR is projected to reach $68.5 billion by 2026. The primary commercial source of NR is the latex of Hevea brasiliensis. NR is produced by the sequential cis-condensation of isopentenyl diphosphate (IPP) through a complex known as the rubber transferase (RTase) complex. This complex is associated with rubber particles, specialized organelles for NR synthesis. Despite numerous attempts to isolate, characterize, and study the RTase complex, definitive results have not yet been achieved. This review proposes an innovative approach to overcome this longstanding challenge. The suggested method involves isolating the RTase complex without using detergents, instead utilizing the native membrane lipids, referred to as "natural nanodiscs", and subsequently reconstituting the complex on liposomes. Additionally, we recommend the adaptation of large nanodiscs for the incorporation and reconstitution of the RTase complex, whether it is in vitro transcribed or present within the natural nanodiscs. These techniques show promise as a viable solution to the current obstacles. Based on our experimental experience and insights from published literature, we believe these refined methodologies can significantly enhance our understanding of the RTase complex and its role in in vitro NR synthesis.

7.
Plant Sci ; 346: 112165, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38925477

ABSTRACT

Agriculture and global food security encounter significant challenges due to viral threats. In the following decades, several molecular studies have focused on discovering biosynthetic pathways of numerous defensive and signaling compounds, as key regulators of plant interactions, either with viruses or their associated vectors. Nevertheless, the complexities of specialized metabolites mediated plant-virus-vector tripartite viewpoint and the identification of their co-evolutionary crossroads toward antiviral defense system, remain elusive. The current study reviews the various roles of plant-specialized metabolites (PSMs) and how plants use these metabolites to defend against viruses. It discusses recent examples of specialized metabolites that have broad-spectrum antiviral properties. Additionally, the study presents the co-evolutionary basis of metabolite-mediated plant-virus-insect interactions as a potential bioinspired approach to combat viral threats. The prospects also show promising metabolic engineering strategies aimed at discovering a wide range of PSMs that are effective in fending off viruses and their related vectors. These advances in understanding the potential role of PSMs in plant-virus interactions not only serve as a cornerstone for developing plant antiviral systems, but also highlight essential principles of biological control.


Subject(s)
Plant Diseases , Plant Viruses , Plants , Plant Viruses/physiology , Plants/virology , Plants/metabolism , Plant Diseases/virology , Animals , Host-Pathogen Interactions , Biological Evolution
8.
Dose Response ; 22(2): 15593258241264951, 2024.
Article in English | MEDLINE | ID: mdl-38912332

ABSTRACT

This study focuses on the investigation of the significance of polymers in drug delivery approaches. The carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) and dextrin-based hydrogel membrane were prepared and employed for the sustained release of third-generation oral antibiotic (cefixime). Different proportions of CMC, PVA and dextrin were blended and hydrogel membranes were fabricated via solvent casting method. The prepared membrane was characterized by FTIR, SEM, UV-visible, TGA and swelling analysis. Cefixime drug was incorporated in the CMC/PVA/dextrin matrix and drug release was investigated. The sustained release of the tested drug (cefixime) was investigated and the drug was released in 120 min in the phosphate-buffered saline (PBS) solution. The antibacterial activity of the prepared membrane was promising against Proteus vulgaris, salmonella typhi, Escherichia coli and Bacillus subtilis strains. The swelling capabilities, thermal stability and non-toxic nature of the prepared CMC/PVA/dextrin membrane could have potential applications for cefixime drug in delivery in a controlled way for the treatment of infectious diseases.

9.
BMC Genomics ; 25(1): 510, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783193

ABSTRACT

Domesticated safflower (Carthamus tinctorius L.) is a widely cultivated edible oil crop. However, despite its economic importance, the genetic basis underlying key traits such as oil content, resistance to biotic and abiotic stresses, and flowering time remains poorly understood. Here, we present the genome assembly for C. tinctorius variety Jihong01, which was obtained by integrating Oxford Nanopore Technologies (ONT) and BGI-SEQ500 sequencing results. The assembled genome was 1,061.1 Mb, and consisted of 32,379 protein-coding genes, 97.71% of which were functionally annotated. Safflower had a recent whole genome duplication (WGD) event in evolution history and diverged from sunflower approximately 37.3 million years ago. Through comparative genomic analysis at five seed development stages, we unveiled the pivotal roles of fatty acid desaturase 2 (FAD2) and fatty acid desaturase 6 (FAD6) in linoleic acid (LA) biosynthesis. Similarly, the differential gene expression analysis further reinforced the significance of these genes in regulating LA accumulation. Moreover, our investigation of seed fatty acid composition at different seed developmental stages unveiled the crucial roles of FAD2 and FAD6 in LA biosynthesis. These findings offer important insights into enhancing breeding programs for the improvement of quality traits and provide reference resource for further research on the natural properties of safflower.


Subject(s)
Carthamus tinctorius , Fatty Acid Desaturases , Fatty Acids, Unsaturated , Genome, Plant , Carthamus tinctorius/genetics , Carthamus tinctorius/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Genomics/methods , Gene Expression Regulation, Plant , Molecular Sequence Annotation
10.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791581

ABSTRACT

Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in China. Although the flavonoid biosynthetic pathway has been studied in several model species, it still remains to be explored in safflower. In this study, we aimed to elucidate the role of CtFLS1 gene in flavonoid biosynthesis and drought stress responses. The bioinformatics analysis on the CtFLS1 gene showed that it contains two FLS-specific motifs (PxxxIRxxxEQP and SxxTxLVP), suggesting its independent evolution. Further, the expression level of CtFLS1 in safflower showed a positive correlation with the accumulation level of total flavonoid content in four different flowering stages. In addition, CtFLS1-overexpression (OE) Arabidopsis plants significantly induced the expression levels of key genes involved in flavonol pathway. On the contrary, the expression of anthocyanin pathway-related genes and MYB transcription factors showed down-regulation. Furthermore, CtFLS1-OE plants promoted seed germination, as well as resistance to osmotic pressure and drought, and reduced sensitivity to ABA compared to mutant and wild-type plants. Moreover, CtFLS1 and CtANS1 were both subcellularly located at the cell membrane and nucleus; the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assay showed that they interacted with each other at the cell membrane. Altogether, these findings suggest the positive role of CtFLS1 in alleviating drought stress by stimulating flavonols and anthocyanin accumulation in safflower.


Subject(s)
Anthocyanins , Arabidopsis , Carthamus tinctorius , Droughts , Flavonols , Gene Expression Regulation, Plant , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Flavonols/metabolism , Anthocyanins/metabolism , Carthamus tinctorius/genetics , Carthamus tinctorius/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Plants, Genetically Modified , Oxidoreductases/metabolism , Oxidoreductases/genetics , Drought Resistance
11.
Heliyon ; 10(9): e29919, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698982

ABSTRACT

Due to its non-expanding properties, presence of Illite mineral in subgrade soil is investigated particularly on California bearing ratio (CBR), resilient modulus (MR) and swell potential. Multiple samples of stiff and weak subgrade soils with varying illite percentages were tested under six different surcharge loads ranging from 2.27 to 13.8 kg. Mineralogical analysis is performed using X-ray diffractometer and MR of soil is assessed using Ultrasonic pulse velocity (UPV) technique. Results showed a positive correlation between Illite percentage and both CBR and MR value. The soil with higher Illite content tends to exhibit higher CBR and MR values while those with higher montmorillonite content show lower values even with more Illite content. The CBR and MR values increases from 8.4% to 19 % and 139 MPa-315 MPa for stiff soil and 3.8%-11.7 % and 23 MPa-83 MPa for weak soil, respectively when the surcharge load was increase from to 2.27-13.8 kg. Additionally, a decrease in swell potential was observed from 1.64% to 1.09 % for stiff soil and 1.39%-0.84 % for weak soil with an increase in Illite percentage. The study also developed an improved relationship for predicting resilient modulus based on CBR value, showing a strong correlation with equations developed by many researchers in the past.

12.
Colloids Surf B Biointerfaces ; 240: 113976, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795585

ABSTRACT

In this study, UV-vis spectroscopy was employed to investigate the interaction between formylphenoxyacetic acid (FPAA) and its derivatives (chalcone and flavones) with ionic surfactants (SDS, CTAB, and DTAB) in different physiological environments. Changes in the physiochemical properties of FPAA chalcone and flavones including binding constants, partitioning constants, and Gibbs free energy were observed which were influenced by the presence of ionic surfactants computed using mathematical models. The solubilization of the targeted compounds in the ionic surfactants was determined through the binding constant (Kb). The results of the present study indicated that electrostatic interactions played a significant role in the solubilization of the targeted compounds in SDS, CTAB, and DTAB. At pH 4.1, FPAA chalcone exhibited stronger binding affinity with SDS compared to CTAB and DTAB. However, at pH 7.4, chalcone showed stronger binding with DTAB compared to SDS, while negligible interaction with CTAB was observed at pH 7.4. The flavones demonstrated stronger binding with DTAB at pH 7.4 compared to SDS and CTAB and it exhibited strong bonding with CTAB at pH 4.1. The negative values of the Gibbs free energy for binding (ΔGb˚) and partitioning (ΔGp˚) constants displayed the spontaneity of the process. However, FPAA chalcone with SDS and FPAA flavones with DTAB furnished positive ΔGb˚, indicating a non-spontaneous process.


Subject(s)
Flavones , Solubility , Surface-Active Agents , Surface-Active Agents/chemistry , Flavones/chemistry , Flavones/metabolism , Hydrogen-Ion Concentration , Cetrimonium/chemistry , Thermodynamics , Ions/chemistry , Chalcone/chemistry , Chalcones/chemistry , Chalcones/metabolism , Sodium Dodecyl Sulfate/chemistry , Static Electricity
13.
J Fluoresc ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602591

ABSTRACT

Fluorescence spectroscopy has been employed for the compositional analysis of flaxseed oil, detection of its adulteration and investigation of the thermal effects on its molecular composition. Excitation wavelengths from 320 to 420 nm have been used to explore the valued ingredients in flaxseed oil. The emission bands of flaxseed oil centred at 390, 414, 441, 475, 515 and 673/720 nm represent vitamin K, isomers of vitamin E, carotenoids and chlorophylls, which can be used as a marker for quality analysis. Due to its high quality, it is highly prone to adulteration and in this study, detection of its adulteration with canola oil is demonstrated by applying principal component analysis. Moreover, the effects of temperature on the molecular composition of cold pressed flaxseed oil has been explored by heating them at cooking temperatures of 100, 110, 120, 130, 140, 150, 160, 170 and 180 °C, each for 30 min. On heating, the deterioration of vitamin E, carotenoids and chlorophylls occurred with an increase in the oxidation products. However, it was found that up to 140 °C, flaxseed oil retains much of its natural composition whereas up to 180 oC, it loses much of its valuable ingredients along with increase of oxidized products.

14.
Environ Monit Assess ; 196(5): 458, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635016

ABSTRACT

The poultry industry is a significant source of animal protein, vitamins, and minerals, particularly through the consumption of chicken meat. In order to conduct the study, 100 samples of liver, chicken feed, and drinking water were collected in nearby areas of Lahore. The investigation aims to detect the presence of specific heavy metals in the collected samples. For this purpose, atomic absorption spectroscopy (AAS) was used to detect heavy metals after proper preparation of the samples. The experimentally observed data were analyzed through a novel statistical approach known as neutrosophic statistics. It was observed that copper (Cu), zinc (Zn), and cadmium (Cd) were the most prominent metals detected with contamination above the safe limits (for chicken drinking water (Zn = 23.09±13.67 mg/L, Cu = 3.84±3.04 mg/L, Cd = 0.805±0.645 mg/L, Pb = 0.275±0.095 mg/L, As = 0.982±0.978 mg/L), for chicken feed (Zn = 2.705±0.715 mg/kg, Cu = 1.85±0.53 mg/kg, Cd = 3.065±1.185 mg/kg, Pb = 0.215±0.175 mg/kg, As = 0.68±0.22 mg/kg), and chicken's liver (Zn = 3.93±0.66 mg/kg, Cu = 1.2±0.52 mg/kg, Cd = 0.07±0.05 mg/kg, Pb = 0.805±0.775 mg/kg, As = 1.05±0.8 mg/kg)). Similarly, the statistical analysis leads that the findings emphasize the importance of monitoring and mitigating heavy metal contamination in the poultry industry to ensure the safety and quality of poultry products.


Subject(s)
Drinking Water , Metals, Heavy , Animals , Chickens , Cadmium , Pakistan , Lead , Environmental Monitoring , Zinc
15.
Chemosphere ; 357: 142116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663674

ABSTRACT

This study explores the utilization of semiconductor-based photocatalysts for environmental remediation through photocatalytic degradation, harnessing solar energy for effective treatment. The primary focus is on the application of photocatalytic technology for the degradation of 2-chlorophenol and methylene blue, critical pollutants requiring remediation. The research involves the synthesis of binary AgAlO2/g-C3N4 nanocomposites through an exchange ion method, subsequent calcination, and sonication. This process enhances the transfer of photogenerated electrons from AgAlO2 to g-C3N4, resulting in a significantly increased reductive electron charge on the surface of g-C3N4. The photocatalytic activity of the synthesized composites is comprehensively examined in the degradation of 2-chlorophenol and methylene blue through detailed crystallographic, electron-microscopy, photoemission spectroscopy, electrochemical, and spectroscopic characterizations. Among the various composites, AgAlO2/20% g-C3N4 emerges as the most active photocatalyst, achieving an impressive 98% degradation of methylene blue and 97% degradation of 2-chlorophenol under visible light. Notably, AgAlO2/20% g-C3N4 surpasses bare AgAlO2 and bare g-C3N4, exhibiting 1.66 times greater methylene blue degradation and constant rate (k) values of 20.17 × 10-3 min-1, 4.18 × 10-3 min-1 and 3.48 × 10-3 min-1, respectively. The heightened photocatalytic activity is attributed to the diminished recombination rate of electron-hole pairs. Scavenging evaluations confirm that O2•- and h+ are the primary photoactive species steering methylene blue photodegradation over AgAlO2/g-C3N4 in the visible region. These findings present new possibilities for the development of efficient binary photocatalysts for environmental remediation.


Subject(s)
Chlorophenols , Environmental Pollutants , Environmental Restoration and Remediation , Light , Methylene Blue , Environmental Restoration and Remediation/methods , Chlorophenols/chemistry , Catalysis , Environmental Pollutants/chemistry , Methylene Blue/chemistry , Nanocomposites/chemistry , Photolysis
16.
RSC Adv ; 14(19): 13535-13564, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665493

ABSTRACT

The prevention and treatment of microbial infections is an imminent global public health concern due to the poor antimicrobial performance of the existing antimicrobial regime and rapidly emerging antibiotic resistance in pathogenic microbes. In order to overcome these problems and effectively control bacterial infections, various new treatment modalities have been identified. To attempt this, various micro- and macro-molecular antimicrobial agents that function by microbial membrane disruption have been developed with improved antimicrobial activity and lesser resistance. Antimicrobial nanoparticle-hydrogels systems comprising antimicrobial agents (antibiotics, biological extracts, and antimicrobial peptides) loaded nanoparticles or antimicrobial nanoparticles (metal or metal oxide) constitute an important class of biomaterials for the prevention and treatment of infections. Hydrogels that incorporate nanoparticles can offer an effective strategy for delivering antimicrobial agents (or nanoparticles) in a controlled, sustained, and targeted manner. In this review, we have described an overview of recent advancements in nanoparticle-hydrogel hybrid systems for antimicrobial agent delivery. Firstly, we have provided an overview of the nanoparticle hydrogel system and discussed various advantages of these systems in biomedical and pharmaceutical applications. Thereafter, different hybrid hydrogel systems encapsulating antibacterial metal/metal oxide nanoparticles, polymeric nanoparticles, antibiotics, biological extracts, and antimicrobial peptides for controlling infections have been reviewed in detail. Finally, the challenges and future prospects of nanoparticle-hydrogel systems have been discussed.

17.
J Hazard Mater ; 470: 134130, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555668

ABSTRACT

Biogenic nanoparticle (NP), derived from plant sources, is gaining prominence as a viable, cost-effective, sustainable, and biocompatible alternative for mitigating the extensive environmental impact of arsenic on the interplay between plant-soil system. Herein, the impact of green synthesized zinc oxide nanoparticles (ZnONPs) was assessed on Catharanthus roseus root system-associated enzymes and their possible impact on microbiome niches (rhizocompartments) and overall plant performance under arsenic (As) gradients. The application of ZnONPs at different concentrations successfully modified the arsenic uptake in various plant parts, with the root arsenic levels increasing 1.5 and 1.4-fold after 25 and 50 days, respectively, at medium concentration compared to the control. Moreover, ZnONPs gradients regulated the various soil enzyme activities. Notably, urease and catalase activities showed an increase when exposed to low concentrations of ZnONPs, whereas saccharase and acid phosphatase displayed the opposite pattern, showing increased activities under medium concentration which possibly in turn influence the plant root system associated microflora. The use of nonmetric multidimensional scaling ordination revealed a significant differentiation (with a significance level of p < 0.05) in the structure of both bacterial and fungal communities under different treatment conditions across root associated niches. Bacterial and fungal phyla level analysis showed that Proteobacteria and Basidiomycota displayed a significant increase in relative abundance under medium ZnONPs concentration, as opposed to low and high concentrations, respectively. Similarly, in depth genera level analysis revealed that Burkholderia, Halomonas, Thelephora and Sebacina exhibited a notably high relative abundance in both the rhizosphere and rhizoplane (the former refers to the soil region influenced by root exudates, while the latter is the root surface itself) under medium concentrations of ZnONPs, respectively. These adjustments to the plant root-associated microcosm likely play a role in protecting the plant from oxidative stress by regulating the plant's antioxidant system and overall biomass.


Subject(s)
Arsenic , Plant Roots , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Arsenic/metabolism , Arsenic/chemistry , Plant Roots/metabolism , Plant Roots/drug effects , Catharanthus/metabolism , Catharanthus/drug effects , Green Chemistry Technology , Metal Nanoparticles/chemistry , Microbiota/drug effects , Bacteria/metabolism , Bacteria/drug effects , Rhizosphere
19.
Polymers (Basel) ; 16(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399845

ABSTRACT

People wear clothes for warmth, survival and necessity in modern life, but in the modern era, eco-friendliness, shortened production times, design and intelligence also matter. To determine the relationship between data series and verify the proximity of each data series, a gray relational analysis, or GRA, is applied to textiles, where seamless bonding technology enhances the bond between components. In this study, a polyurethane prepolymer, 2-hydroxyethyl acrylate (2-HEA) as an end-capping agent and n-octyl acrylate (ODA) as a photoinitiator were used to synthesize a dual-curing polyurethane hot-melt adhesive. Taguchi quality engineering and a gray relational analysis were used to discuss the influence of different mole ratios of NCO:OH and the effect of the molar ratio of the addition of octyl decyl acrylate on the mechanical strength. The Fourier transform infrared spectroscopy (FTIR) results showed the termination of the prepolymer's polymerization reaction and the C=O peak intensity at 1730 cm-1, indicating efficient bonding to the main chain. Advanced Polymer Chromatography (APC) was used to investigate the high-molecular-weight (20,000-30,000) polyurethane polymer bonded with octyl decyl acrylate to achieve a photothermosetting effect. The thermogravimetric analysis (TGA) results showed that the thermal decomposition temperature of the polyurethane hot-melt adhesive also increased, and they showed the highest pyrolysis temperature (349.89 °C) for the polyhydric alcohols. Furthermore, high peel strength (1.68 kg/cm) and shear strength (34.94 kg/cm2) values were detected with the dual-cure photothermosetting polyurethane hot-melt adhesive. The signal-to-noise ratio was also used to generate the gray relational degree. It was observed that the best parameter ratio of NCO:OH was 4:1 with five moles of monomer. The Taguchi quality engineering method was used to find the parameters of single-quality optimization, and then the gray relation calculation was used to obtain the parameter combination of multi-quality optimization for thermosetting the polyurethane hot-melt adhesive. The study aims to meet the requirements of seamless bonding in textile factories and optimize experimental parameter design by setting target values that can effectively increase production speed and reduce processing time and costs as well.

20.
Environ Sci Pollut Res Int ; 31(10): 14553-14573, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38315339

ABSTRACT

Construction land reduction (CLR) is an effective instrument to improve intensive land use, restrict the expansion of construction land, safeguard the requisition-compensation balance of construction land in China, and realize sustainable development. But multiple risks arise from the process of construction land reduction. In that case, identifying and analyzing the key risks of CLR is the prerequisite for formulating practical policy guidelines. This study is conducted to identify the risk factors of CLR and analyze these risks based on expert opinion. Initially, the original risk factors are sourced from existing literature. In order to tailor them to China's specific context, the Delphi method is employed to systematically refine risk definitions, consolidate similar risk elements, and identify any previously unrecognized risks in the literature. Following an in-depth review of the literature, we create a contextual relationship-based model employing an integrated technique of interpretive structural modeling (ISM) and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC) analysis. Based on the ISM and MICMAC analysis, five key risks were identified, and the prevention strategies and policy recommendations for CLR project risks are put forward.


Subject(s)
Policy , Sustainable Development , China , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL