Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38718411

ABSTRACT

Usher syndrome (USH) is a genetic disorder that is characterized by sensorineural hearing loss (HL) and visual abnormality, i.e., loss of night vision and side (peripheral) vision. Usher syndrome is categorized into four subtypes (USH1, USH2, USH3, USH4) on the basis of phenotypic spectrum. Profound hearing loss (HL), vestibular are flexia and language disturbance are typically associated with Usher type 1, while USH2 is linked with moderate to severe level of congenital HL. USH3 has late onset of deafness in life (referred to as "postlingual"), inconstant vestibular abnormality and onset of retinitis pigmentosa (RP) typically in 2nd decade of life. Patients with USH4 have no vestibular impairment and have late onset of retinitis pigmentosa (RP) and sensorineural hearing loss. Until now, 15 genetic loci have been reported to be linked with all types of USH. Among reported USH loci, nine are related to be involved in USH1, three in USH2, two in USH3 and one locus in USH4, respectively. Current review has described different types of Usher syndrome and their molecular genetics, and role of usher proteins in sensory organs. Moreover, we also suggested certain candidate genes for uncharacterized loci that may help the molecular geneticist to reach their target easily. Conclusion: The current catalogue of USH genetic data may assist in genetic counseling, genetic diagnosis, and genotype-phenotype correlation.

2.
Gene ; 833: 146582, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35597529

ABSTRACT

Biallelic mutations in ZMPSTE24 are known to be associated with autosomal recessive mandibuloacral dysplasia with type B lipodystrophy (MADB) and lethal restrictive dermopathy (RD), respectively. Disease manifestation is depending on the remaining enzyme activity of the mutated ZMPSTE24 protein. To date, complete loss of function has exclusively been reported in RD cases. In this study, we identified a novel N-terminal homozygous frameshift mutation (c.28_29insA) in a consanguineous family segregating with MADB. An in-depth analysis of the mutated sequence revealed, that the one base pair insertion creates a novel downstream in-frame start codon, which supposedly serves as an alternative translation initiation site (TIS). This possible rescue mechanism would explain the relatively mild clinical outcome in the studied individuals. Our findings demonstrate the necessity for careful interpretation of N-terminal variants potentially effecting translation initiation.


Subject(s)
Lipodystrophy , Membrane Proteins , Metalloendopeptidases , Progeria , Codon, Initiator/genetics , Frameshift Mutation , Humans , Lamin Type A/genetics , Lamin Type A/metabolism , Lipodystrophy/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mutation , Progeria/genetics
3.
J Genet ; 1002021.
Article in English | MEDLINE | ID: mdl-34470921

ABSTRACT

Leber congenital amaurosis (LCA) is a rare form of early onset vision loss or blindness due to retinal dystrophy. This condition is characterized by early vision loss, nystagmus and severe retinal dysfunction. To date, genetic studies have reported 19 genes to be associated with autosomal recessive LCA, most of which are involved in the retinal morphology and the physiology of the phototransduction pathway. In the current study, a large consanguineous family segregating congenital blindness was ascertained from the Dera Ismail Khan region of Pakistan. Genetic analysis was performed through genomewide SNP genotyping (for homozygosity-by-descent mapping), whole-exome sequencing (for mutation identification) and Sanger sequencing (for segregation analysis). In silico structural predictions were performed through SWISS-Model (structure prediction) and ClusPro (molecular docking). Molecular investigation of the present LCA family identified a novel homozygous missense mutation p.Asp306Val in GUCY2D gene (NM_000180.3:c.917A>T). In silico structural modelling and interaction studies predicted significant changes in protein folding and interacting residues. The present molecular genetic study further extends the mutational spectrum of GUCY2D in LCA, and its genetic heterogeneity in the Pakistani population. The findings of the computational studies on protein structure and interaction profile predicted pathogenic consequences of p.Asp306Val on GUCY2D function.


Subject(s)
Genome-Wide Association Study , Guanylate Cyclase/genetics , Leber Congenital Amaurosis/genetics , Mutation, Missense , Polymorphism, Single Nucleotide , Receptors, Cell Surface/genetics , Asian People/genetics , Female , Genetic Predisposition to Disease , Genotyping Techniques/methods , Homozygote , Humans , Male , Molecular Docking Simulation , Pedigree , Phenotype , Protein Conformation , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL