Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(39): e2300542, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37317869

ABSTRACT

Solid-liquid phase transitions are basic physical processes, but atomically resolved microscopy has yet to capture their full dynamics. A new technique is developed for controlling the melting and freezing of self-assembled molecular structures on a graphene field-effect transistor (FET) that allows phase-transition behavior to be imaged using atomically resolved scanning tunneling microscopy. This is achieved by applying electric fields to 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane-decorated FETs to induce reversible transitions between molecular solid and liquid phases at the FET surface. Nonequilibrium melting dynamics are visualized by rapidly heating the graphene substrate with an electrical current and imaging the resulting evolution toward new 2D equilibrium states. An analytical model is developed that explains observed mixed-state phases based on spectroscopic measurement of solid and liquid molecular energy levels. The observed nonequilibrium melting dynamics are consistent with Monte Carlo simulations.

2.
Nano Lett ; 21(20): 8770-8776, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34653333

ABSTRACT

The spatial arrangement of adsorbates deposited onto a clean surface under vacuum typically cannot be reversibly tuned. Here we use scanning tunneling microscopy to demonstrate that molecules deposited onto graphene field-effect transistors (FETs) exhibit reversible, electrically tunable surface concentration. Continuous gate-tunable control over the surface concentration of charged F4TCNQ molecules was achieved on a graphene FET at T = 4.5K. This capability enables the precisely controlled impurity doping of graphene devices and also provides a new method for determining molecular energy level alignment based on the gate-dependence of molecular concentration. Gate-tunable molecular concentration is explained by a dynamical molecular rearrangement process that reduces total electronic energy by maintaining Fermi level pinning in the device substrate. The molecular surface concentration is fully determined by the device back-gate voltage, its geometric capacitance, and the energy difference between the graphene Dirac point and the molecular LUMO level.


Subject(s)
Graphite , Electric Capacitance , Electronics , Microscopy, Scanning Tunneling , Transistors, Electronic
3.
Nat Nanotechnol ; 12(11): 1077-1082, 2017 11.
Article in English | MEDLINE | ID: mdl-28945240

ABSTRACT

The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

4.
Adv Mater ; 29(36)2017 Sep.
Article in English | MEDLINE | ID: mdl-28722188

ABSTRACT

A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties.

5.
ACS Nano ; 9(12): 12168-73, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26482218

ABSTRACT

We report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluorotetracyanoquinodimethane (F4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negatively charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy.

6.
J Vis Exp ; (101): e52711, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26273961

ABSTRACT

Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene's charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene's electronic properties. Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge and/or molecular states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies. These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices.


Subject(s)
Graphite/chemistry , Microscopy, Scanning Tunneling/instrumentation , Electronics , Microscopy, Scanning Tunneling/methods , Physics , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...