Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Hematol Oncol ; 42(1): e3225, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37795760

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are two of the most prevalent non-Hodgkin's lymphoma subtypes. Despite advances, treatment resistance and patient relapse remain challenging issues. Our study aimed to scrutinize gene expression distinctions between DLBCL and FL, employing a cohort of 53 DLBCL and 104 FL samples that underwent rigorous screening for genetic anomalies. The NanoString nCounter assay evaluated 730 cancer-associated genes, focusing on densely tumorous areas in diagnostic samples. Employing the Lymph2Cx method, we determined the cell-of-origin (COO) for DLBCL cases. Our meticulous analysis, facilitated by Qlucore Omics Explorer software, unveiled a substantial 37% of genes with significantly differential expression patterns between DLBCL and FL, pointing to nuanced mechanistic disparities. Investigating the impact of FL disease stage and DLBCL COO on gene expression yielded minimal differences, prompting us to direct our attention to consistently divergent genes in DLBCL. Intriguingly, our Gene Set Enrichment Analysis spotlighted 21% of these divergent genes, converging on the DNA damage response (DDR) pathway, vital for cell survival and cancer evolution. Strong positive correlations among most DDR genes were noted, with key genes like BRCA1, FANCA, FEN1, PLOD1, PCNA, and RAD51 distinctly upregulated in DLBCL compared to FL and normal tissue controls. These findings were subsequently validated using RNA seq data on normal controls and DLBCL samples from public databases like The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, enhancing the robustness of our results. Considering the established significance of these DDR genes in solid cancer therapies, our study underscores their potential applicability in DLBCL treatment strategies. In conclusion, our investigation highlights marked gene expression differences between DLBCL and FL, with particular emphasis on the essential DDR pathway. The identification of these DDR genes as potential therapeutic targets encourages further exploration of synthetic lethality-based approaches for managing DLBCL.


Subject(s)
Lymphoma, Follicular , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Synthetic Lethal Mutations , Neoplasm Recurrence, Local , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Follicular/drug therapy
2.
Anticancer Res ; 43(11): 4801-4807, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37909960

ABSTRACT

BACKGROUND/AIM: B-cell lymphomas are characterized by diverse genetic anomalies affecting B-cell differentiation. To expand targeted therapies, an in-depth grasp of the molecular dynamics in the germinal center (GC) is vital. Transducin ß-like 1 X-linked receptor 1 (TBL1XR1) and nuclear receptor corepressor 1 (NCOR1) are instrumental within the GC, modulating myriad oncogenic pathways. Their prognostic roles in various cancers are established, yet their precise impact on B-cell lymphoma is elusive. MATERIALS AND METHODS: Digital RNA quantification (Nanostring) of previously curated 188 B-cell lymphoma specimens across four subtypes, follicular lymphoma (FL), diffuse large B-cell lymphoma, not otherwise specified (DLBCL-NOS), primary testicular lymphoma (PTL), and plasmablastic lymphoma (PBL), was reanalyzed with focus on TBL1XR1 and NCOR1 expression, juxtaposing them with 730 ontogenically linked genes. RESULTS: Notably, TBL1XR1 expression was significantly elevated in the PTL- ABC-subtype versus DLBCL-NOS- ABC-subtype (p<0.001), with no marked disparity in GCB-subtypes between them. The median TBL1XR1 expression was remarkably diminished in FL, yet, intriguingly, GCB-subtypes of DLBCL-NOS exhibited significantly enhanced expression compared to FL (p=0.001). In contrast, NCOR1's expression trajectory was consistent across DLBCL-NOS, PTL, and PBL. A strong inverse correlation between TBL1XR1 and NCOR1 was observed in PBL (p=0.001). Importantly, TBL1XR1's pronounced association with several DNA Damage repair (DDR) genes was noted suggesting influence on DNA repair. TBL1XR1-DDR gene signature was further validated employing a public data set of DLBCL-NOS. CONCLUSION: Our exploratory findings unravel the expression patterns of TBL1XR1/NCOR1 in B-cell lymphoma variants. The TBL1XR1-DDR genes connection offers insights into potential DNA repair roles, paving avenues for innovative therapies in B-cell lymphomas.


Subject(s)
Lymphoma, Follicular , Lymphoma, Large B-Cell, Diffuse , Plasmablastic Lymphoma , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , DNA Repair , DNA Damage , Repressor Proteins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Nuclear Receptor Co-Repressor 1/genetics
3.
Hum Pathol ; 141: 102-109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37524252

ABSTRACT

Plasmablastic lymphoma (PBL) is a rare and aggressive subtype of non-Hodgkin lymphoma that shares features with diffuse large B-cell lymphoma (DLBCL). While significant progress has been made in treating DLBCL, the prognosis for PBL remains poor, highlighting the need to identify new therapeutic targets. Using RNA expression analysis, we compared the expression of genes involved in the phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways between PBL and DLBCL. We used critical PI3K (n = 201) and MAPK (n = 57) signaling probe sets to achieve this objective. Our results demonstrate unique molecular mechanisms underlying PBL pathogenesis compared to DLBCL, particularly within the PI3K and MAPK signaling pathways. We found that elevated STAT3 expression in PBL correlates with hyperactive MAPK and PI3K pathways, unlike DLBCL. Additionally, the hyperactivation of the PI3K signaling axis in PBL is unrelated to B-cell receptor or phosphatase and tensin homolog activity, indicating a distinct mechanism compared to DLBCL. Furthermore, we observed unique activation patterns in MAPK pathways between PBL and DLBCL, with PBL exhibiting high expression of the neurotrophic tyrosine kinase receptor (NTKR) family, specifically NTRK1 and NTRK2 genes, which have therapeutic potential. We also found that neither human immunodeficiency virus nor Epstein-Barr virus infection influences gene expression profiles linked to PI3K and MAPK signaling in PBL. These findings could lead to adapting targeted therapies developed for DLBCL to address the specific needs of PBL patients better and contribute to developing novel, targeted therapeutic strategies to improve patient outcomes.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Plasmablastic Lymphoma , Signal Transduction , Humans , Herpesvirus 4, Human , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Plasmablastic Lymphoma/genetics , Plasmablastic Lymphoma/therapy
4.
Hematol Oncol ; 41(5): 828-837, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37291944

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) shows a high degree of clinical and biological heterogeneity. Primary testicular lymphoma (PTL) is an extranodal variant of DLBCL associated with a higher risk of recurrence, including contralateral testicles and central nervous system sanctuary sites. Several molecular aberrations, including somatic mutation of MYD88, CD79B, and upregulation of NF-kB, PDL-1, and PDL-2, are thought to contribute to the pathogenesis and poor prognosis of PTL. However, additional biomarkers are needed that may improve the prognosis and help understand the PTL biology and lead to new therapeutic targets. RNA from diagnostic tissue biopsies of the PTL-ABC subtype and matched nodal DLBCL-ABC subtype patients was evaluated by mRNA and miRNA expression. Screening of 730 essential oncogenic genes was performed, and their epigenetic connections were examined using the nCounter PAN-cancer pathway, and Human miRNA assays with the nCounter System (NanoString Technologies). PTL and nodal DLBCL patients were comparable in age, gender, and putative cell of origin (p > 0.05). Wilms tumor 1 (WT1) expression in PTL exceeded that in nodal DLBCL (>6-fold; p = 0.01, FDR <0.01) and WT1 associated pathway genes THBS4, PTPN5, PLA2G2A, and IFNA17 were upregulated in PTL (>2.0-fold, p < 0.01, FDR <0.01). Additionally, miRNAs targeting WT1 (hsa15a-5p, hsa-miR-16-5p, has-miR-361-5p, has-miR-27b-3p, has-miR-199a-5p, has-miR-199b-5p, has-miR-132-3p, and hsa-miR-128-3p) showed higher expression in PTL compared to nodal DLBCL (≥2.0-fold; FDR 0.01). Lower expression of BMP7, LAMB3, GAS1, MMP7, and LAMC2 (>2.0-fold, p < 0.01) was observed in PTL compared to nodal DLBCL. This research revealed higher WT1 expression in PTL relative to nodal DLBCL, suggesting that a specific miRNA subset may target WT1 expression and impact the PI3k/Akt pathway in PTL. Further investigation is needed to explore WT1's biological role in PTL and its potential as a therapeutic target.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , MicroRNAs , Humans , WT1 Proteins/therapeutic use , RNA, Messenger/genetics , Phosphatidylinositol 3-Kinases/therapeutic use , MicroRNAs/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Protein Tyrosine Phosphatases, Non-Receptor
5.
Mod Pathol ; 36(8): 100198, 2023 08.
Article in English | MEDLINE | ID: mdl-37105495

ABSTRACT

Plasmablastic lymphoma (PBL) is a rare and aggressive B-cell lymphoma with overlapping characteristics with diffuse large B-cell lymphoma (DLBCL) and multiple myeloma. Hyperactive Wnt signaling derails homeostasis and promotes oncogenesis and chemoresistance in DLBCL and multiple myeloma. Evidence suggests active cross-talk between the Wnt and RAS pathways impacting metastasis in solid cancers in which combined targeted therapies show effective results. Recent genomic studies in PBL demonstrated a high frequency of mutations linked with the RAS signaling pathway. However, the role of RAS and Wnt signaling pathway molecule expression in PBL remained unknown. We examined the expression of Wnt and RAS pathway-related genes in a well-curated cohort of PBL. Because activated B cells are considered immediate precursors of plasmablasts in B cell development, we compared this data with activated B-cell type DLBCL (ABC-DLBCL) patients, employing NanoString transcriptome analysis (770 genes). Hierarchical clustering revealed distinctive differential gene expression between PBL and ABC-DLBCL. Gene set enrichment analysis labeled the RAS signaling pathway as the most enriched (37 genes) in PBL, including upregulating critical genes, such as NRAS, RAF1, SHC1, and SOS1. Wnt pathway genes were also enriched (n = 22) by gene set enrichment analysis. Molecules linked with Wnt signaling activation, such as ligands or targets (FZD3, FZD7, c-MYC, WNT5A, WNT5B, and WNT10B), were elevated in PBL. Our data also showed that, unlike ABC-DLBCL, the deranged Wnt signaling activity in PBL was not linked with hyperactive nuclear factor κB and B-cell receptor signaling. In divergence, Wnt signaling inhibitors (CXXC4, SFRP2, and DKK1) also showed overexpression in PBL. The high expression of RAS signaling molecules reported may indicate linkage with gain-in-function RAS mutations. In addition, high expression of Wnt and RAS signaling molecules may pave pathways to explore benefiting from combined targeted therapies, as reported in solid cancer, to improve prognosis in PBL patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Multiple Myeloma , Plasmablastic Lymphoma , Humans , Wnt Signaling Pathway/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Gene Expression , DNA-Binding Proteins/genetics , Transcription Factors/genetics
6.
Curr Issues Mol Biol ; 45(1): 604-613, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36661526

ABSTRACT

Dysregulated Wnt/ß-catenin signal transduction is implicated in initiation, propagation, and poor prognosis in AML. Epigenetic inactivation is central to Wnt/ß-catenin hyperactivity, and Wnt/ß-catenin inhibitors are being investigated as targeted therapy. Dysregulated Wnt/ß-catenin signaling has also been linked to accelerated aging. Since AML is a disease of old age (>60 yrs), we hypothesized age-related differential activity of Wnt/ß-catenin signaling in AML patients. We probed Wnt/ß-catenin expression in a series of AML in the elderly (>60 yrs) and compared it to a cohort of pediatric AML (<18 yrs). RNA from diagnostic bone marrow biopsies (n = 101) were evaluated for key Wnt/ß-catenin molecule expression utilizing the NanoString platform. Differential expression of significance was defined as >2.5-fold difference (p < 0.01). A total of 36 pediatric AML (<18 yrs) and 36 elderly AML (>60 yrs) were identified in this cohort. Normal bone marrows (n = 10) were employed as controls. Wnt/ß-catenin target genes (MYC, MYB, and RUNX1) showed upregulation, while Wnt/ß-catenin inhibitors (CXXR, DKK1-4, SFRP1-4, SOST, and WIFI) were suppressed in elderly AML compared to pediatric AML and controls. Our data denote that suppressed inhibitor expression (through mutation or hypermethylation) is an additional contributing factor in Wnt/ß-catenin hyperactivity in elderly AML, thus supporting Wnt/ß-catenin inhibitors as potential targeted therapy.

7.
Haematologica ; 107(3): 690-701, 2022 03 01.
Article in English | MEDLINE | ID: mdl-33792219

ABSTRACT

B-cell non-Hodgkin lymphoma (B-NHL) encompasses multiple clinically and phenotypically distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL, such as diffuse large B-cell lymphoma, have been comprehensively interrogated at the genomic level, but rarer subtypes, such as mantle cell lymphoma, remain less extensively characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively compared using the same methodology to identify conserved or subtype-specific patterns of genomic alterations. Here, we employed a large targeted hybrid-capture sequencing approach encompassing 380 genes to interrogate the genomic landscapes of 685 B-NHL tumors at high depth, including diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, and Burkitt lymphoma. We identified conserved hallmarks of B-NHL that were deregulated in the majority of tumors from each subtype, including frequent genetic deregulation of the ubiquitin proteasome system. In addition, we identified subtype-specific patterns of genetic alterations, including clusters of co-occurring mutations and DNA copy number alterations. The cumulative burden of mutations within a single cluster were more discriminatory of B-NHL subtypes than individual mutations, implicating likely patterns of genetic cooperation that contribute to disease etiology. We therefore provide the first cross-sectional analysis of mutations and DNA copy number alterations across major B-NHL subtypes and a framework of co-occurring genetic alterations that deregulate genetic hallmarks and likely cooperate in lymphomagenesis.


Subject(s)
Burkitt Lymphoma , Lymphoma, Follicular , Lymphoma, Large B-Cell, Diffuse , Adult , Cross-Sectional Studies , Humans , Lymphoma, Follicular/genetics , Mutation
8.
Pediatr Hematol Oncol ; 38(6): 581-592, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33764257

ABSTRACT

Genetic aberrations in the epigenome are rare in pediatric AML, hence expression data in epigenetic regulation and its downstream effect is lacking in childhood AML. Our pilot study screened epigenetic modifiers and its related oncogenic signal transduction pathways concerning clinical outcomes in a small cohort of pediatric AML in KSA. RNA from diagnostic BM biopsies (n = 35) was subjected to expression analysis employing the nCounter Pan-Cancer pathway panel. The patients were dichotomized into low ASXL1 (17/35; 49%) and high ASXL1 (18/35; 51%) groups based on ROC curve analysis. Age, gender, hematological data or molecular risk factors (FLT3 mutation/molecular fusion) exposed no significant differences across these two distinct ASXL1 expression groups (P > 0.05). High ASXL1 expression showed linkage with high expression of other epigenetic modifiers (TET2/EZH2/IDH1&2). Our data showed that high ASXL1 mRNA is interrelated with increased BRCA1 associated protein-1 (BAP1) and its target gene E2F Transcription Factor 1 (E2F1) expression. High ASXL1 expression was associated with high mortality {10/18 (56%) vs. 1/17; (6%) P < 0 .002}. Low ASXL1 expressers showed better OS {740 days vs. 579 days; log-rank P= < 0.023; HR 7.54 (0.98-54.1)}. The association between high ASXL1 expression and epigenetic modifiers is interesting but unexplained and require further investigation. High ASXL1 expression is associated with BAP1 and its target genes. Patients with high ASXL1 expression showed poor OS without any association with a conventional molecular prognostic marker.


Subject(s)
Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , Repressor Proteins , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Infant , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Male , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Survival Rate , Tumor Suppressor Proteins/biosynthesis , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/biosynthesis , Ubiquitin Thiolesterase/genetics
9.
Bone Marrow Transplant ; 55(7): 1282-1289, 2020 07.
Article in English | MEDLINE | ID: mdl-32231249

ABSTRACT

Atopy is excessive production of IgE in response to allergens. We evaluated in patients undergoing allogeneic hematopoietic cell transplantation (HCT) the following hypotheses: (1) Atopy is "curable" in atopic patients receiving HCT from a nonatopic donor (D-R+), and (2) Atopy is transferable from atopic donors to nonatopic recipients (D+R-). Atopic patients with atopic donors (D+R+) and non-atopic patients with non-atopic donors (D-R-) served as controls. We measured levels of multiallergen-specific IgE (A-IgE, atopy defined as ≥0.35 kUA/L) in sera from 54 patients and their donors pre HCT and from the patients at ≥2 years post HCT. Only 7/12 (58%) D- R+ patients became nonatopic after HCT. Only 1/11 (9%) D+R- patients became atopic. Eleven of 13 (85%) D-R- patients remained nonatopic. Unexpectedly, 11/18 (61%) D+R+ patients became nonatopic. In conclusion, contrary to our hypothesis and previous reports, the "cure" of atopy may occur in only some D-R+ patients and the transfer of atopy may occur rarely. The "cure" may not be necessarily due to the exchange of atopic for nonatopic immune system, as the "cure" may also occur in D+R+ patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hypersensitivity, Immediate , Allergens , Humans , Immunoglobulin E
10.
J Clin Pathol ; 72(9): 630-635, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31189540

ABSTRACT

AIMS: Heightened B-cell receptor (BCR) activity in diffuse large B-cell lymphoma (DLBCL) is well established, and a subset of patients with relapsed DLBCL can benefit from BCR-targeted therapies. Universal outreach of such emerging therapies mandates forming a global landscape of BCR molecular signalling in DLBCL, including Southeast Asia. METHODS: 79 patients with DLBCL (nodal, 59% and extranodal, 41%) treated with rituximab combined with cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) therapy were selected. Expression levels of BCR and linked signalling pathway molecules were inter-related with Lymph2Cx-based cell of origin (COO) types and overall survival (OS). RESULTS: Activated B-cell (ABC) type DLBCL constituted 49% (39/79) compared with germinal centre B-cell (GCB) type DLBCL (29/79; 37%) and revealed poor prognosis (p=0.013). In ABC-DLBCL, high BTK expression exerted poor response to R-CHOP, while OS in ABC-DLBCL with low BTK expression was similar to GCB-DLBCL subtype (p=0.004). High LYN expression coupled with a poor OS for ABC-DLBCL as well as GCB-DLBCL subtypes (p=0.001). Furthermore, high coexpression of BTK/LYN (BTK high/LYN high) showed poor OS (p=0.019), which linked with upregulation of several genes associated with BCR repertoire and nuclear factor-kappa B pathway (p<0.01). In multivariate analysis, high BTK and LYN expression retained prognostic significance against established clinical predictive factors such as age, International Prognostic Index and COO (p<0.05). CONCLUSIONS: Our data provide a clear association between high BCR activity in DLBCL and response to therapy in a distinct population. Molecular data provided here will pave the pathway for the provision of promising novel-targeted therapies to patients with DLBCL in Southeast Asia.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Precision Medicine/methods , Receptors, Antigen, B-Cell/genetics , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Murine-Derived/adverse effects , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Asian People/genetics , Biomarkers, Tumor/immunology , Clinical Decision-Making , Cyclophosphamide/adverse effects , Cyclophosphamide/therapeutic use , Doxorubicin/adverse effects , Doxorubicin/therapeutic use , Female , Humans , Lymphoma, Large B-Cell, Diffuse/ethnology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/mortality , Malaysia/epidemiology , Male , Middle Aged , Patient Selection , Prednisone/adverse effects , Prednisone/therapeutic use , Prevalence , Receptors, Antigen, B-Cell/immunology , Registries , Rituximab , Signal Transduction/drug effects , Time Factors , Treatment Outcome , Vincristine/adverse effects , Vincristine/therapeutic use
11.
Appl Immunohistochem Mol Morphol ; 26(7): 483-488, 2018 08.
Article in English | MEDLINE | ID: mdl-28362701

ABSTRACT

BACKGROUND: Molecular heterogeneity accounts for the variable and often poor prognosis in acute myeloid leukemia (AML). The current risk stratification strategy in clinical practice is limited to karyotyping and limited molecular studies screening for genetic mutations such as FLT-3 and NPM1. There is opportunity to identify further molecular prognostic markers, which may also lay the groundwork for the development of novel targeted therapies. Complex molecular technologies require transition into widely available laboratory platforms, for better integration into routine clinical practice. METHOD: In a defined subset (MYC/BCL2 or MYC/BCL2) of AML patients (n=20), we examined expression signature of several genes (n=12) of established prognostic value in AML. RNA expression and MYC/BCL2 protein pattern was correlated with 3 cytogenetic risk groups and overall survival. RESULTS: K-means++ unsupervised clustering defined 2 distinct groups with high and low transcript levels of BAALC/MN1/MLLT11/EVI1/SOCS2 genes (>2.5-fold difference; P<0.001). This mRNA signature trended with higher prevalence of MYC/BCL2 coexpression (P<0.057) and poor overall survival (P<0.036), but did not correlate with conventional cytogenetic risk groups (P<0.084). CONCLUSIONS: This pilot study provides useful data, which may help further refine the prognostic scheme of AML patients outside conventional cytogenetic risk groups. It also presents some biological rationale for future studies to explore the use of novel agents targeting MYC and/or BCL2 genes in combination with conventional chemotherapy protocols for AML.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , MDS1 and EVI1 Complex Locus Protein/biosynthesis , Multigene Family , Neoplasm Proteins/biosynthesis , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins/biosynthesis , Tumor Suppressor Proteins/biosynthesis , Up-Regulation , Adolescent , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Nucleophosmin , Proto-Oncogene Proteins c-bcl-2 , Survival Rate , Trans-Activators
12.
J Clin Pathol ; 71(3): 215-220, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28775174

ABSTRACT

AIMS: The cell of origin (COO) based molecular characterisation into germinal centre B-cell-like (GCB) and activated B-cell-like (ABC) subtypes are central to the pathogenesis and clinical course in diffuse large B-cell lymphoma (DLBCL). Globally, clinical laboratories employ pragmatic but less than ideal immunohistochemical (IHC) assay for COO classification. Novel RNA-based platforms using routine pathology samples are emerging as new gold standard and offer unique opportunities for assay standardisation for laboratories across the world. We evaluated our IHC protocols against RNA-based technologies to determine concordance; additionally, we gauged the impact of preanalytical variation on the performance of Lymph2Cx assay. METHODS: Diagnostic biopsies (n=104) were examined for COO classification, employing automated RNA digital quantification assay (Lymph2Cx). Results were equated against IHC-based COO categorisation. Assay performance was assessed through its impact on overall survival (OS). RESULTS: 96 (92%) informative samples were labelled as GCB (38/96; 40%) and non-GCB (58/96; 60%) by IHC evaluation. Lymph2Cx catalogued 36/96 (37%) samples as GCB, 45/96 (47%) as ABC and 15/96 (16%) as unclassified. Lymph2Cx being reference, IHC protocol revealed sensitivity of 81% for ABC and 75% for GCB categorisation and positive predictive value of 81% versus 82%, respectively. Lymph2Cx-based COO classification performed superior to Hans algorithm in predicting OS (log rank test, p=0.017 vs p=0.212). CONCLUSIONS: Our report show that current IHC-based protocols for COO classification of DLBCL at UKM Malaysia are in line with previously reported results and marked variation in preanalytical factors do not critically impact Lymph2Cx assay quality.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/classification , RNA/analysis , Adolescent , Adult , Aged , Aged, 80 and over , B-Lymphocytes/pathology , Cohort Studies , Female , Germinal Center/pathology , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/pathology , Malaysia , Male , Middle Aged , Prognosis , Reproducibility of Results , Retrospective Studies , Tissue Array Analysis , Young Adult
13.
Haematologica ; 103(2): 288-296, 2018 02.
Article in English | MEDLINE | ID: mdl-29097500

ABSTRACT

The objective of this study was to create a bioclinical model, based on clinical and molecular predictors of event-free and overall survival for relapsed/refractory diffuse large B-cell lymphoma patients treated on the Canadian Cancer Trials Group (CCTG) LY12 prospective study. In 91 cases, sufficient histologic material was available to create tissue microarrays and perform immunohistochemistry staining for CD10, BCL6, MUM1/IRF4, FOXP1, LMO2, BCL2, MYC, P53 and phosphoSTAT3 (pySTAT3) expression. Sixty-seven cases had material sufficient for fluorescent in situ hybridization (FISH) for MYC and BCL2 In addition, 97 formalin-fixed, paraffin-embedded tissue samples underwent digital gene expression profiling (GEP) to evaluate BCL2, MYC, P53, and STAT3 expression, and to determine cell-of-origin (COO) using the Lymph2Cx assay. No method of determining COO predicted event-free survival (EFS) or overall survival (OS). Factors independently associated with survival outcomes in multivariate analysis included primary refractory disease, elevated serum lactate dehydrogenase (LDH) at relapse, and MYC or BCL2 protein or gene expression. A bioclinical score using these four factors predicted outcome with 3-year EFS for cases with 0-1 vs 2-4 factors of 55% vs 16% (P<0.0001), respectively, assessing MYC and BCL2 by immunohistochemistry, 46% vs. 5% (P<0.0001) assessing MYC and BCL2 messenger ribonucleic acid (mRNA) by digital gene expression, and 42% vs 21% (P=0.079) assessing MYC and BCL2 by FISH. This proposed bioclinical model should be further studied and validated in other datasets, but may discriminate relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients who could benefit from conventional salvage therapy from others who require novel approaches. The LY12 study; clinicaltrials.gov Identifier: 00078949.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/diagnosis , Models, Biological , Proto-Oncogene Proteins c-bcl-2/analysis , Proto-Oncogene Proteins c-myc/analysis , Adult , Aged , Female , Gene Expression Profiling , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Middle Aged , Prognosis , Recurrence , Salvage Therapy/methods , Young Adult
14.
Hematol Oncol ; 35(1): 79-86, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26354285

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive disease with frequent relapse. Targeted therapies against B-cell receptor (BCR) molecules have demonstrated improved outcomes in relapsed cases. However, clinical responses are slow and selective, with failure to attain complete remission in a significant subset of patients. Complex interaction of BCR signal transduction with toll-like receptor (TLR) and other pathways in MCL remains unknown, thus averting progress in development of targeted therapies. We have performed detailed digital quantification of BCR/TLR signalling molecules and their effector pathways in a cohort (n = 81) of MCL patients and correlated these data with overall survival. Hierarchical clustering model based on BCR/TLR genes revealed two distinct (BCRhigh and BCRlow ) subsets of patients (n = 32; 40%) with significant differences in expression (>1.5-fold change; p < 0.05). Higher levels of BTK/SYK/BLNK/CARD11/PLCG signalosome and lower expression of MALT1/BCL10 genes suggested tonic pattern of BCR activation. Amplified expression of TLR6/TLR7/TLR9 was noted in concert with hyper-responsiveness of BCR machinery. MYD88, a key TLR adaptor molecule, was not upregulated in any of these clusters, which may suggest a 'cross-talk' between BCR and TLR pathways. In sync with BCR/TLR signalling, we recorded significantly enhanced expression of genes associated with NF-kB pathway in BCRhigh subset of MCL patients. On univariate analysis, the BCRhigh patients showed a trend towards inferior clinical response to a standardized treatment protocol, compared with the BCRlow group (log rank, p = 0.043). In conclusion, we have identified hyperactive BCR/TLR signalling pathways and their effector downstream targets in a subset of MCL patients and associated it with poor clinical outcomes. Our study provides quantitative evidence at RNA expression level of possible concomitant collaboration between TLR and BCR signalling molecules in MCL. These data will provide further insights for future functional studies and, hence, development of targeted therapies for MCL patients. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
B-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Mantle-Cell/metabolism , Receptors, Antigen, B-Cell/metabolism , Toll-Like Receptors/metabolism , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cohort Studies , Computational Biology , Female , Gene Expression Profiling , Humans , Lymphoma, Mantle-Cell/mortality , Male , Middle Aged , Neoplasm Recurrence, Local , Remission Induction , Signal Transduction , Treatment Outcome , Up-Regulation
15.
Hematol Oncol ; 35(3): 350-356, 2017 Sep.
Article in English | MEDLINE | ID: mdl-26856970

ABSTRACT

Acute myeloid leukaemia (AML) is a clinically aggressive disease with marked genetic heterogeneity. Cytogenetic abnormalities provide the basis for risk stratification into clinically favourable, intermediate, and unfavourable groups. There are additional genetic mutations, which further influence the prognosis of patients with AML. Most of these result in molecular aberrations whose downstream target is MYC. It is therefore logical to study the relationship between MYC protein expression and cytogenetic risk groups. We studied MYC expression by immunohistochemistry in a large cohort (n = 199) of AML patients and correlated these results with cytogenetic risk profile and overall survival (OS). We illustrated differential expression of MYC protein across various cytogenetic risk groups (p = 0.03). Highest expression of MYC was noted in AML patients with favourable cytogenetic risk group. In univariate analysis, MYC expression showed significant negative influence of OS in favourable and intermediate cytogenetic risk group (p = 0.001). Interestingly, MYC expression had a protective effect in the unfavourable cytogenetic risk group. In multivariate analysis, while age and cytogenetic risk group were significant factors influencing survival, MYC expression by immunohistochemistry methods also showed some marginal impact (p = 0.069). In conclusion, we have identified differential expression of MYC protein in relation to cytogenetic risk groups in AML patients and documented its possible impact on OS in favourable and intermediate cytogenetic risk groups. These preliminary observations mandate additional studies to further investigate the routine clinical use of MYC protein expression in AML risk stratification. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Chromosome Aberrations , Gene Expression , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Proto-Oncogene Proteins c-myc/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Karyotype , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Prognosis , Proto-Oncogene Proteins c-myc/metabolism , Risk Assessment , Risk Factors , Survival Analysis , Young Adult
16.
Diagn Pathol ; 11(1): 89, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27632978

ABSTRACT

BACKGROUND: The World Health Organization (WHO) classification system defines recurrent chromosomal translocations as the sole diagnostic and prognostic criteria for acute leukemia (AL). These fusion transcripts are pivotal in the pathogenesis of AL. Clinical laboratories universally employ conventional karyotype/FISH to detect these chromosomal translocations, which is complex, labour intensive and lacks multiplexing capacity. Hence, it is imperative to explore and evaluate some newer automated, cost-efficient multiplexed technologies to accommodate the expanding genetic landscape in AL. METHODS: "nCounter® Leukemia fusion gene expression assay" by NanoString was employed to detect various fusion transcripts in a large set samples (n = 94) utilizing RNA from formalin fixed paraffin embedded (FFPE) diagnostic bone marrow biopsy specimens. This series included AL patients with various recurrent translocations (n = 49), normal karyotype (n = 19), or complex karyotype (n = 21), as well as normal bone marrow samples (n = 5). Fusion gene expression data were compared with results obtained by conventional karyotype and FISH technology to determine sensitivity/specificity, as well as positive /negative predictive values. RESULTS: Junction probes for PML/RARA; RUNX1-RUNX1T1; BCR/ABL1 showed 100 % sensitivity/specificity. A high degree of correlation was noted for MLL/AF4 (85 sensitivity/100 specificity) and TCF3-PBX1 (75 % sensitivity/100 % specificity) probes. CBFB-MYH11 fusion probes showed moderate sensitivity (57 %) but high specificity (100 %). ETV6/RUNX1 displayed discordance between fusion transcript assay and FISH results as well as rare non-specific binding in AL samples with normal or complex cytogenetics. CONCLUSIONS: Our study presents preliminary data with high correlation between fusion transcript detection by a throughput automated multiplexed platform, compared to conventional karyotype/FISH technique for detection of chromosomal translocations in AL patients. Our preliminary observations, mandates further vast validation studies to explore automated molecular platforms in diagnostic pathology.


Subject(s)
Biomarkers, Tumor/genetics , Gene Fusion , In Situ Hybridization, Fluorescence , Leukemia, Myeloid, Acute/genetics , Multiplex Polymerase Chain Reaction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Messenger/genetics , Translocation, Genetic , Adolescent , Adult , Aged , Aged, 80 and over , Automation, Laboratory , Biopsy , Bone Marrow Examination , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing , Humans , Karyotyping , Leukemia, Myeloid, Acute/diagnosis , Male , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Predictive Value of Tests , Reproducibility of Results , Young Adult
17.
J Clin Pathol ; 68(10): 844-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26124315

ABSTRACT

BACKGROUND: Mantle cell lymphoma (MCL) is an aggressive disease with genetic heterogeneity and discrete clinical subtypes. MCL is rarely CD10 positive. These cases raise the question whether a subset of MCL may be germinal centre (GC) derived, and have distinct clinicopathological characteristics. AIMS AND METHODS: A series of nine CD10-positive MCL cases is described herein. The clinicopathological and immunophenotypic features, immunoglobulin somatic hypermutation (SHM) status and gene expression profile (GEP) data are detailed. These features were compared with two independent sets (n=20, each) of CD10-negative MCL cases (controls), which were randomly selected from our institutional registry. RESULTS: GEP showed distinct expression of a GC signature in CD10-positive MCL cases with minimal impact on downstream signalling pathways. There were no significant differences in the clinicopathological features or clinical outcome between our CD10-positive and CD10-negative MCL cases. The frequency of SHM was comparable with established data. CONCLUSIONS: This study provides convincing evidence that CD10 expression is related to a distinct GC signature in MCL cases, but without clinical or biological implications.


Subject(s)
Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Gene Expression Profiling , Immunophenotyping , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/immunology , Neprilysin/analysis , Case-Control Studies , Cluster Analysis , Gene Expression Profiling/methods , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Lymphoma, Mantle-Cell/classification , Lymphoma, Mantle-Cell/pathology , Phenotype , Predictive Value of Tests , Registries
18.
Appl Immunohistochem Mol Morphol ; 23(10): 733-9, 2015.
Article in English | MEDLINE | ID: mdl-25710580

ABSTRACT

MicroRNA (MIR) signatures are critical to pathobiology and prognosis of acute myeloid leukemia (AML). MIR223 is expressed at low levels in progenitor cells, whereas high expression is induced by granulocytic differentiation. Novel-targeted therapies through epigenetic manipulation of MIR223 regulators are being explored in AML but correlative data between established clinical prognostic markers and MIR223 expression in AML is lacking. MIR223 has inverse relationship with LMO2 protein expression and our group has recently reported a close association between LMO2 protein expression and chromosomal findings in AML patients. In this study, we examined the expression of MIR223 in a large cohort of AML patients and correlated it with LMO2 protein expression, cytogenetic data, degree of differentiation [French-American and British (FAB)/World Health Organization classifications], and overall survival. MIR223 expression was upregulated in only a subset of patients (37%). Suppression of MIR223 was more frequent among patients with aneuploid karyotype compared with diploid karyotype (P=0.005). In AML, not otherwise specified category, AML with maturation (FAB-M2) showed higher levels of MIR223 when compared with either AML without maturation (FAB M0/M1) (P=0.001); AML with monoblastic differentiation (FAB M4/M5) (P=0.004) or AML with myelodysplasia-related changes (P=0.011). Among cytogenetic risk groups, suppression of MIR223 was universal (>95%) in high-risk group when compared with intermediate-risk group (P=0.004). No correlation between MIR223 and LMO2 protein expression was identified. In conclusion, we have shown that suppression of MIR223 expression, as compared with controls, is associated with lack of differentiation and adverse cytogenetic profile, but unrelated with LMO2 protein expression or overall survival.


Subject(s)
Adaptor Proteins, Signal Transducing , Gene Expression Regulation, Leukemic , LIM Domain Proteins , Leukemia, Myeloid, Acute , MicroRNAs , Proto-Oncogene Proteins , RNA, Neoplasm , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Chromosome Aberrations , Disease-Free Survival , Female , Humans , LIM Domain Proteins/biosynthesis , LIM Domain Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , MicroRNAs/biosynthesis , MicroRNAs/genetics , Middle Aged , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Retrospective Studies , Survival Rate
19.
Appl Immunohistochem Mol Morphol ; 23(5): 327-33, 2015.
Article in English | MEDLINE | ID: mdl-25265432

ABSTRACT

Among plasma cell myeloma (PCM) patients, gene expression profiling (GEP)-based molecular classification has proven to be an independent predictor of survival, after autologous stem cell transplantation. However, GEP has limited routine clinical applicability given its complex methodology, high cost, and limited availability in clinical laboratories. In this study, we have evaluated biomarkers identified from GEP discoveries, utilizing immunohistochemistry (IHC) platform in a cohort of PCM patients. IHC staining for cyclins B1, B2, D1, D2, D3, FGFR3, PAX5, and integrin ß7 (ITGß7) was performed on the bone marrow biopsies of 93 newly diagnosed PCM patients. Expression of FGFR3 was noted in 10 (11%) samples correlating completely with t(4;14)(p16;q32) results (P<0.001); however, the association between FGFR3 and cyclin D2 expression was not significant (P=0.14). ITGß7 expression was present in 9/93 (9%) patients and all these samples also demonstrated upregulated expression of cyclin D2 (P=0.014). Expression of cyclins D1, D2, and D3 was variable in this cohort. Positive protein expression of cyclin D1 was noted in 30/93 (32%), D2 in 17/93 (18%), and D3 in 5/93 (5%) samples. Coexpression of cyclins D1 and D2 was observed in 13/93 (14%) samples, whereas 28 (30%) samples were negative for all the 3 cyclin D proteins. Cyclin B1 was not expressed in any sample, despite adequate staining in positive controls. Cyclin B2 was expressed in 33/93 (35%) and PAX5 protein was noted in 7/93 (8%) samples. In summary, we have demonstrated that mRNA-based prognostic markers can be detected by routine IHC in decalcified bone marrow samples. This approach may provide a useful tool for the wider adoption of prognostic makers for risk stratification of PCM patients. We anticipate that such an approach might allow patients with high-risk immunoprofiles to be considered for other potential novel therapeutic agents, potentially sparing some patients the toxicity of stem cell transplant.


Subject(s)
Biomarkers, Tumor/genetics , Cyclin B2/genetics , Cyclin D1/genetics , Gene Expression , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Adult , Aged , Antibodies, Monoclonal/chemistry , Bone Marrow/metabolism , Bone Marrow/pathology , Cyclin D2/genetics , Cyclin D3/genetics , Female , Gene Expression Profiling , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Integrin beta Chains/genetics , Karyotyping , Male , Middle Aged , Multiple Myeloma/pathology , Prognosis , Receptor, Fibroblast Growth Factor, Type 3/genetics , Translocation, Genetic
20.
Hematol Oncol ; 33(4): 159-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25143154

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive disease with poor overall survival, attributable in part to frequent defects of the DNA repair genes. In such malignancies, additional inhibition of the ubiquitous DNA damage repair protein, poly-ADP ribose polymerase-1 (PARP1) has shown enhanced cytotoxicity (so-called synthetic lethality). We studied PARP1 expression in a series of clinical cases of MCL, with the secondary aim to ascertain the relationship between PARP1 expression and DNA repair gene expression (namely ATM and p53) by immunohistochemical methods. We also examined the relationship between PARP1 expression and the well-established prognostic biomarker Ki-67, in addition to correlating PARP1 expression with the overall survival. From amongst our series of 79 unselected cases of MCL, we detected PARP1 expression in all but two cases with variable intensity. We also noted correlations between PARP1 expression and ATM and p53 expression. As described in previous studies, we identified a significant survival difference on the basis of Ki-67 and p53 expression. When digital H-score analysis of PARP1 expression was performed, there was a distinct survival advantage noted in patients with lower levels of expression. When our biomarker data were assessed by Cox regression, furthermore, the dominant effects of p53 and PARP1 expression were highlighted. Our data support the need for further research into the potential utility of PARP1 as a biomarker in MCL and for the potential direction of future PARP1 inhibitor-targeted therapy studies.


Subject(s)
DNA Damage/genetics , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Ki-67 Antigen , Lymphoma, Mantle-Cell/pathology , Male , Middle Aged , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...