Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0303397, 2024.
Article in English | MEDLINE | ID: mdl-38848334

ABSTRACT

A novel powered ankle-foot prosthesis is designed. The effect of wearing the novel prosthesis and an energy-storage-and-return (ESAR) foot on lower-limb biomechanics is investigated to preliminarily evaluate the design. With necessary auxiliary materials, a non-amputated subject (a rookie at using prostheses) is recruited to walk on level ground with an ESAR and the novel powered prostheses separately. The results of the stride characteristics, the ground reaction force (GRF) components, kinematics, and kinetics in the sagittal plane are compared. Wearing the powered prosthesis has less prolongation of the gait cycle on the unaffected side than wearing the ESAR foot. Wearing ESAR or proposed powered prostheses influences the GRF, kinematics, and kinetics on the affected and unaffected sides to some extent. Thereinto, the knee moment on the affected side is influenced most. Regarding normal walking as the reference, among the total of 15 indexes, the influences of wearing the proposed powered prosthesis on six indexes on the affected side (ankle's/knee's/hip's angles, hip's moment, and Z- and X-axis GRF components) and five indexes on the unaffected side (ankle's/knee's/hip's angles and ankle's/hip's moments) are slighter than those of wearing the ESAR foot. The influences of wearing the powered prosthesis on two indexes on the unaffected side (knee's moment and X-axis GRF component) are similar to those of wearing the ESAR foot. The greatest improvement of wearing the powered prosthesis is to provide further plantarflexion after reaching the origin of the ankle joint before toe-off, which means that the designed powered device can provide further propulsive power for the lifting of the human body's centre of gravity during walking on level ground. The results demonstrate that wearing the novel powered ankle-foot prosthesis benefits the rookie in recovering the normal gait more than wearing the ESAR foot.


Subject(s)
Artificial Limbs , Foot , Prosthesis Design , Humans , Biomechanical Phenomena , Foot/physiology , Gait/physiology , Walking/physiology , Male , Ankle/physiology , Ankle Joint/physiology , Adult , Lower Extremity/physiology
2.
Phys Eng Sci Med ; 46(4): 1723-1739, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37870729

ABSTRACT

Assessment of the prosthetic gait is an important clinical approach to evaluate the quality and functionality of the prescribed lower limb prosthesis as well as to monitor rehabilitation progresses following limb amputation. Limited access to quantitative assessment tools generally affects the repeatability and consistency of prosthetic gait assessments in clinical practice. The rapidly developing wearable technology industry provides an alternative to objectively quantify prosthetic gait in the unconstrained environment. This study employs a neural network-based model in estimating three-dimensional body segmental orientation of the lower limb amputees during gait. Using a wearable system with inertial sensors attached to the lower limb segments, thirteen individuals with lower limb amputation performed two-minute walk tests on a robotic foot and a passive foot. The proposed model replicates features of a complementary filter to estimate drift free three-dimensional orientation of the intact and prosthetic limbs. The results indicate minimal estimation biases and high correlation, validating the ability of the proposed model to reproduce the properties of a complementary filter while avoiding the drawbacks, most notably in the transverse plane due to gravitational acceleration and magnetic disturbance. Results of this study also demonstrates the capability of the well-trained model to accurately estimate segmental orientation, regardless of amputation level, in different types of locomotion task.


Subject(s)
Gait , Lower Extremity , Humans , Foot , Amputation, Surgical , Neural Networks, Computer
3.
Polymers (Basel) ; 15(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36679135

ABSTRACT

3D printing is the most suitable method to manufacture the frame parts of powered ankle-foot prostheses but the compressive strength of the 3D-printed part needs to be ensured. According to the compression test standard ASTM D695, the effect of infill pattern and density, which is transferred to the mass of the standard specimen, on the compressive strength is investigated with a carbon fiber-reinforced nylon material. With the same infill pattern, specimens with more mass have a higher compressive strength. With the same mass, specimens with triangular fill have a higher compressive strength than those with rectangular and gyroid fills. Compared with specimens with a solid fill, specimens with a triangular fill can also provide more compressive strength in a unit mass. According to the results of standard specimens, following the requirement of strength and lightweight, 41% triangular fill is selected to manufacture the supporting part of a powered ankle-foot prosthesis. Under a compressive load of 1225 N, the strain of the assembly of the standard adaptor and the 3D-printed part is 1.32 ± 0.04%, which can meet the requirement of the design. This study can provide evidence for other 3D-printed applications with the requirement of compressive strength.

4.
Sci Rep ; 12(1): 11217, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780242

ABSTRACT

Planar spiral spring is important for the dimensional miniaturisation of motor-based elastic actuators. However, when the stiffness calculation of the spring arm is based on simple beam bending theory, the results possess substantial errors compared with the stiffness obtained from finite-element analysis (FEA). It deems that the errors arise from the spiral length term in the calculation formula. Two Gaussian process regression models are trained to amend this term in the stiffness calculation of spring arm and complete spring. For the former, 216 spring arms' data sets, including different spiral radiuses, pitches, wrap angles and the stiffness from FEA, are employed for training. The latter engages 180 double-arm springs' data sets, including widths instead of wrap angles. The simulation of five spring arms and five planar spiral springs with arbitrary dimensional parameters verifies that the absolute values of errors between the predicted stiffness and the stiffness from FEA are reduced to be less than 0.5% and 2.8%, respectively. A planar spiral spring for a powered ankle-foot prosthesis is designed and manufactured to verify further, of which the predicted value possesses a 3.25% error compared with the measured stiffness. Therefore, the amendment based on the prediction of trained models is available.

SELECTION OF CITATIONS
SEARCH DETAIL
...