Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Sci ; 41(9): 2389-2406, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32328835

ABSTRACT

Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.


Subject(s)
Prion Diseases , Prions , Copper , Humans , Magnetic Resonance Spectroscopy
2.
J Appl Clin Med Phys ; 20(2): 84-93, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30680884

ABSTRACT

Malignancies with a superficial involvement of the scalp/skull present technical challenges for radiation-treatment-planning, such as achieving skin coverage with the prescribed dose and with the desirable conformity, homogeneity, and lower brain dose. We report a radiotherapy treatment technique for a patient diagnosed with diffuse basosquamous cell carcinoma of the scalp and adjacent skull-bone. This study presents the plan's quality parameters, patient's dosimetry, and patient's outcome. The patient was treated using volume-modulated-arc therapy (VMAT) and a double-shell-bolus full-head device (DSBFD) designed for patient immobilization and better skin coverage. A VMAT plan was generated using an Eclipse treatment-planning system for a prescribed dose of 60 Gy in 30 fractions. The treatment plan was analyzed to determine the conformity index (CI), the homogeneity index (HI), the target-coverage, and the dose to the organs-at-risk (OARs). Skin-doses were measured using optically stimulated luminescence (OSL) dosimeters. Clinical follow-up was performed by the radiation oncologist during and after the course of radiotherapy. With regard to planning target volume (PTV) coverage, the V95 was 99%. The measured and calculated dose to the skin was in the range 100-108% of the prescribed dose. The mean brain-PTV dose was 711 cGy. The CI and HI were 1.09 and 1.08, respectively. The mean positioning accuracy for the patient over the course of treatment was within 2 mm. The measured accumulated skin dose and planning dose was agreed within 2%. Clinical examination of the patient 6 months after radiotherapy showed good response to the treatment and a 90% reduction in scarring. The DSBFD technique combined with RapidArc treatment was useful in terms of the target dose distribution and coverage. Daily patient alignment was found very precise, reproducible and less time-consuming.


Subject(s)
Bone Neoplasms/radiotherapy , Carcinoma, Basosquamous/radiotherapy , Immobilization/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Scalp/radiation effects , Female , Humans , Middle Aged , Organs at Risk/radiation effects , Prognosis , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Scalp/pathology
3.
BMC Cancer ; 18(1): 1255, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30558665

ABSTRACT

BACKGROUND: The secretion of soluble factors enables communication between tumour cells and the surrounding microenvironment and plays an important role in oncogenesis. Pancreatic ductal adenocarcinoma (PDAC) is characterised by a highly reactive microenvironment, harbouring a variety of cell types, including S100A8/S100A9-expressing monocytes. S100A8/S100A9 proteins regulate the behaviour of cancer cells by inducing pre-metastatic cascades associated with cancer spread. The aim of this study was to examine how S100A8/A9 proteins mediate tumour-stroma crosstalk in PDAC. METHODS: Cytokine profiling of pancreatic cancer cell-derived conditioned media was performed using Bio-Plex Pro 27 Plex Human Cytokine assays. Protein expression and activation of downstream signalling effectors and NF-κB were assessed by western blotting analysis and reporter assays respectively. RESULTS: Stimulation of cultured pancreatic cancer cells with S100A8 and S100A9 increased the secretion of the pro-inflammatory cytokines IL-8, TNF-α, and FGF. S100A8, but not S100A9 induced PDGF secretion. Conversely, pancreatic cancer cell-derived conditioned media and the individual cytokines, TNF-α and TGF-ß induced the expression of S100A8 and S100A9 proteins in the HL-60 monocytic cell line and primary human monocytes, while FGF and IL-8 induced the expression of S100A9 only. S100A8 and S100A9 activated MAPK and NF-κB signalling in pancreatic cancer. This was partially mediated via activation of the receptor of advanced glycosylation end-product (RAGE). CONCLUSION: S100A8 and S100A9 proteins induce specific cytokine secretion from PDAC cells, which in turn enhances the expression of S100A8/A9. This paracrine crosstalk could have implications for PDAC invasiveness and metastatic potential.


Subject(s)
Calgranulin A/metabolism , Calgranulin B/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cytokines/metabolism , Monocytes/metabolism , Pancreatic Neoplasms/metabolism , Cell Culture Techniques , Cell Line, Tumor , Culture Media, Conditioned/metabolism , HL-60 Cells , Humans , Monocytes/cytology , Paracrine Communication , Signal Transduction
4.
BMC Infect Dis ; 17(1): 4, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28049440

ABSTRACT

BACKGROUND: Middle East Respiratory Syndrome (MERS) is caused by MERS coronavirus (MERS-CoV). More than 80% of reported cases have occurred in Saudi Arabia, with a mortality exceeding 50%. Health-care workers (HCWs) are at risk of acquiring and transmitting this virus, so the concerns of HCWs in Saudi Arabia regarding MERS were evaluated. METHODS: An anonymous, self-administered, previously validated questionnaire was given to 1031 HCWs at three tertiary hospitals in Saudi Arabia from October to December, 2014. Concerns regarding the disease, its severity and governmental efforts to contain it, as well as disease outcomes were assessed using 31 concern statements in five distinct domains. A total concern score was calculated for each HCW. Multiple regression analyses were used to identify predictors of high concern scores. RESULTS: The average age of participants was 37.1 ± 9.0 years, 65.8% were married and 59.1% were nurses. The majority of respondents (70.4%) felt at risk of contracting a MERS-CoV infection at work, 69.1% felt threatened if a colleague contracted MERS-CoV, 60.9% felt obliged to care for patients infected with MERS-CoV and 87.8% did not feel safe at work using standard precautions. In addition, 87.7% believed that the government should isolate patients with MERS in specialized hospitals, 73.7% agreed with travel restriction to and from areas affected by MERS and 65.3% agreed with avoiding inviting expatriates from such areas. After adjustment for covariates, high concern scores were significantly associated with being a Saudi national (p < 0.001), a non-physician (p < 0.001) and working in the central region (p < 0.001). CONCLUSIONS: The majority of respondents reported concern regarding MERS-CoV infection from exposure at work. The overall level of concern may be influenced by previous experience of MERS outbreaks and related cultural issues. The concerns of HCWs may affect their overall effectiveness in an outbreak and should be addressed by incorporating management strategies in outbreak planning.


Subject(s)
Coronavirus Infections/epidemiology , Emotions , Middle East Respiratory Syndrome Coronavirus , Personnel, Hospital/psychology , Adult , Attitude of Health Personnel , Coronavirus Infections/psychology , Cross-Sectional Studies , Disease Outbreaks , Female , Humans , Infection Control , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Nurses/psychology , Saudi Arabia/epidemiology , Tertiary Care Centers , Young Adult
5.
Magn Reson Chem ; 51(5): 255-68, 2013 May.
Article in English | MEDLINE | ID: mdl-23436479

ABSTRACT

Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.


Subject(s)
Copper/analysis , Copper/metabolism , Prion Diseases/metabolism , Animals , Electron Spin Resonance Spectroscopy , Humans , Magnetic Resonance Spectroscopy , Prions/chemistry , Prions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...