Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pediatr ; 10: 895298, 2022.
Article in English | MEDLINE | ID: mdl-35783297

ABSTRACT

Background: Autoimmune diseases (AIDs) share a common molecular etiology and often present overlapping clinical presentations. Thus, this study aims to explore the complex molecular basis of AID by whole exome sequencing and computational biology analysis. Methods: Molecular screening of the consanguineous AID family and the computational biology characterization of the potential variants were performed. The potential variants were searched against the exome data of 100 healthy individuals and 30 celiac disease patients. Result: A complex inheritance pattern of PAK2 (V43A), TAP2 (F468Y), and PLCL1 (V473I) genetic variants was observed in the three probands of the AID family. The PAK2 variant (V43A) is a novel one, but TAP2 (F468Y) and PLCL1 (V473I) variants are extremely rare in local Arab (SGHP and GME) and global (gnomAD) databases. All these variants were localized in functional domains, except for the PAK2 variant (V43A) and were predicted to alter the structural (secondary structure elements, folding, active site confirmation, stability, and solvent accessibility) and functional (gene expression) features. Therefore, it is reasonable to postulate that the dysregulation of PAK2, TAP2, and PLCL1 genes is likely to elicit autoimmune reactions by altering antigen processing and presentation, T cell receptor signaling, and immunodeficiency pathways. Conclusion: Our findings highlight the importance of exploring the alternate inheritance patterns in families presenting complex autoimmune diseases, where classical genetic models often fail to explain their molecular basis. These findings may have potential implications for developing personalized therapies for complex disease patients.

2.
Front Med (Lausanne) ; 8: 694668, 2021.
Article in English | MEDLINE | ID: mdl-34249980

ABSTRACT

Familial hypercholesterolemia (FH), a well-known lipid disease caused by inherited genetic defects in cholesterol uptake and metabolism is underdiagnosed in many countries including Saudi Arabia. The present study aims to identify the molecular basis of severe clinical manifestations of FH patients from unrelated Saudi consanguineous families. Two Saudi families with multiple FH patients fulfilling the combined FH diagnostic criteria of Simon Broome Register, and the Dutch Lipid Clinic Network (DLCN) were recruited. LipidSeq, a targeted resequencing panel for monogenic dyslipidemias, was used to identify causative pathogenic mutation in these two families and in 92 unrelated FH cases. Twelve FH patients from two unrelated families were sharing a very rare, pathogenic and founder LDLR stop gain mutation i.e., c.2027delG (p.Gly676Alafs*33) in both the homozygous or heterozygous states, but not in unrelated patients. Based on the variant zygosity, a marked phenotypic heterogeneity in terms of LDL-C levels, clinical presentations and resistance to anti-lipid treatment regimen (ACE inhibitors, ß-blockers, ezetimibe, statins) of the FH patients was observed. This loss-of-function mutation is predicted to alter the free energy dynamics of the transcribed RNA, leading to its instability. Protein structural mapping has predicted that this non-sense mutation eliminates key functional domains in LDLR, which are essential for the receptor recycling and LDL particle binding. In conclusion, by combining genetics and structural bioinformatics approaches, this study identified and characterized a very rare FH causative LDLR pathogenic variant determining both clinical presentation and resistance to anti-lipid drug treatment.

3.
Front Pediatr ; 7: 44, 2019.
Article in English | MEDLINE | ID: mdl-30847336

ABSTRACT

Background: Lamellar ichthyosis is an autosomal recessive type of rare skin disorders characterized with defective epidermis leading hyperkeratosis with brownish-gray scales over the body. These patients are born as collodion babies and may also exhibit additional features like erythema, ectropion, and eclabium. This disease is mainly caused by homozygous and compound heterozygous alterations in transglutaminase 1 encoding gene (TGM1), which is located on 14q12. Case presentation: This study reports the genetic analysis of a 4-year Saudi girl presenting lamellar ichthyosis. She was the first child of unrelated parents. The family had no previous history of the disease phenotype. She was born as a collodion baby without any prenatal complications. At the time of this study she had developed rough scaly skin on her legs, arms and trunk regions with thick palms and soles. Whole exome sequencing (WES) followed by Sanger sequence validation identified a novel compound heterozygous variant in TGM1 gene. The paternal variant was a missense transition (c.1141G>A; p.Ala381Thr) present at exon 7, while maternal variant (c.758-1G>C) was present at the intron4-exon5 boundary. To the best of our knowledge these variants had not been reported before in TGM1 gene. Conclusion: In isolated and inbred populations, homozygous variants are identified more frequently; however, our results suggest that compound heterozygous variants should also be considered especially when the marriages are not consanguineous.

SELECTION OF CITATIONS
SEARCH DETAIL
...