Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 25(7): 4591-4603, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38918933

ABSTRACT

The successful use of lipid nanoparticles (LNPs) for clinical development of the COVID-19 mRNA vaccines marked a breakthrough in mRNA-LNP therapeutics. As one of the vital components of LNPs, poly(ethylene glycol)-lipid conjugates (PEG-lipids) influence particle biophysical properties and stability, as well as interactions within biological environments. Reports suggesting that anti-PEG antibodies can be detected quite commonly within the human population raise concerns that PEG content in commercial LNP products could further stimulate immune responses to PEG. The presence of anti-PEG antibodies has been linked to accelerated clearance of LNPs, potentially a source of variability in the biological response to mRNA-LNP products. This motivated us to explore potential PEG alternatives. Herein, we report physicochemical and biological properties of mRNA-LNPs assembled using poly(2-oxazoline) (POx)- and poly(2-oxazine) (POz)-based polymer-lipid conjugates. Notably, we investigated monoacyl lipids as alternatives to diacyl lipids. mRNA-LNPs produced using monoacyl POx/POz-lipids displayed comparable biophysical characteristics and cytocompatibility. Delivery of reporter mRNA resulted in similar transfection efficiencies, in both adherent and suspension cells, and in mice, compared to PEG-lipid equivalents. Our results suggest that monoacyl POx/POz-lipid-containing LNPs are promising candidates for the development of PEG-free LNP-based therapeutic products.


Subject(s)
Lipids , Nanoparticles , Oxazoles , Polyethylene Glycols , RNA, Messenger , Polyethylene Glycols/chemistry , Animals , Nanoparticles/chemistry , Mice , RNA, Messenger/genetics , Humans , Oxazoles/chemistry , Lipids/chemistry , Oxazines/chemistry , Liposomes
2.
EBioMedicine ; 98: 104878, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016322

ABSTRACT

BACKGROUND: SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS: 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 µg, N = 32), mRNA vaccine (10, 20, or 50 µg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS: govNCT05272605. FINDINGS: No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION: There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING: Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , Australia , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , mRNA Vaccines , SARS-CoV-2 , Adolescent , Young Adult , Middle Aged
3.
Mol Pharm ; 20(8): 3876-3885, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37491979

ABSTRACT

Lipid nanoparticles (LNPs) are the prime delivery vehicle for mRNA vaccines. Previous hypotheses suggested that LNPs contribute to innate reactogenicity and lead to the establishment of a vaccine adaptive response. It has not been clear whether LNP adjuvancy in the muscle is the prime driver of adaptive immune responses or whether delivery to secondary lymphatic organs is necessary to induce strong adaptive responses. To address this, we formulated reporter gene (NLuc) or OVA mRNA into LNP or coadministered the mRNA with empty LNP. After IM injection, we correlated the delivery with adaptive immune responses. Additionally, we investigated humoral responses to modified mRNA encoding the SARS-CoV-2 spike protein. Compared to unformulated mRNA encoding nanoluciferase, with or without co-administered empty LNPs, LNP-formulated mRNA resulted in high levels of nanoluciferase in the secondary lymphoid organs. Similarly, LNP-mRNA encoding ovalbumin led to a cellular immune response against OVA while free mRNA, with or without empty adjuvanted LNPs, caused little or no immune response. Finally, only mice injected with LNP-formulated mRNA encoding SARS-CoV-2 spike protein elicited robust cellular and humoral immune responses. Our results suggest that the mRNA delivery and transfection of secondary lymphatic organs, not LNP adjuvancy or RNA expression in muscle, are the main drivers for adaptive immune response in mice. This work informs the design of next-generation mRNA delivery systems where better delivery to secondary lymphatic organs should lead to a better vaccine response.


Subject(s)
COVID-19 , Nanoparticles , Animals , Humans , Mice , Injections, Intramuscular , COVID-19/prevention & control , SARS-CoV-2/genetics , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , RNA, Messenger/genetics
4.
Biomater Sci ; 10(11): 2940-2952, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35475455

ABSTRACT

Ionizable cationic lipids play a critical role in developing new gene therapies for various biomedical applications, including COVID-19 vaccines. However, it remains unclear whether the formulation of lipid nanoparticles (LNPs) using DLin-MC3-DMA, an optimized ionizable lipid clinically used for small interfering RNA (siRNA) therapy, also facilitates high liver-selective transfection of other gene therapies such as plasmid DNA (pDNA). Here we report the first investigation into pDNA transfection efficiency in different mouse organs after intramuscular and intravenous administration of lipid nanoparticles (LNPs) where DLin-MC3-DMA, DLin-KC2-DMA or DODAP are used as the ionizable cationic lipid component of the LNP. We discovered that these three benchmark lipids previously developed for siRNA delivery followed an unexpected characteristic rank order in gene expression efficiency when utilized for pDNA. In particular, DLin-KC2-DMA facilitated higher in vivo pDNA transfection than DLin-MC3-DMA and DODAP, possibly due to its head group pKa and lipid tail structure. Interestingly, LNPs formulated with either DLin-KC2-DMA or DLin-MC3-DMA exhibited significantly higher in vivo protein production in the spleen than in the liver. This work sheds light on the importance of the choice of ionizable cationic lipid and nucleic acid cargo for organ-selective gene expression. The study also provides a new design principle towards the formulation of more effective LNPs for biomedical applications of pDNA, such as gene editing, vaccines and immunotherapies.


Subject(s)
COVID-19 , Nanoparticles , Animals , COVID-19 Vaccines , Cations/chemistry , DNA/genetics , Gene Expression , Humans , Lipids/chemistry , Liposomes , Mice , Nanoparticles/chemistry , Plasmids/genetics , RNA, Small Interfering/chemistry
5.
Acta Biomater ; 131: 16-40, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34153512

ABSTRACT

Vaccination represents the best line of defense against infectious diseases and is crucial in curtailing pandemic spread of emerging pathogens to which a population has limited immunity. In recent years, mRNA vaccines have been proposed as the new frontier in vaccination, owing to their facile and rapid development while providing a safer alternative to traditional vaccine technologies such as live or attenuated viruses. Recent breakthroughs in mRNA vaccination have been through formulation with lipid nanoparticles (LNPs), which provide both protection and enhanced delivery of mRNA vaccines in vivo. In this review, current paradigms and state-of-the-art in mRNA-LNP vaccine development are explored through first highlighting advantages posed by mRNA vaccines, establishing LNPs as a biocompatible delivery system, and finally exploring the use of mRNA-LNP vaccines in vivo against infectious disease towards translation to the clinic. Furthermore, we highlight the progress of mRNA-LNP vaccine candidates against COVID-19 currently in clinical trials, with the current status and approval timelines, before discussing their future outlook and challenges that need to be overcome towards establishing mRNA-LNPs as next-generation vaccines. STATEMENT OF SIGNIFICANCE: With the recent success of mRNA vaccines developed by Moderna and BioNTech/Pfizer against COVID-19, mRNA technology and lipid nanoparticles (LNP) have never received more attention. This manuscript timely reviews the most advanced mRNA-LNP vaccines that have just been approved for emergency use and are in clinical trials, with a focus on the remarkable development of several COVID-19 vaccines, faster than any other vaccine in history. We aim to give a comprehensive introduction of mRNA and LNP technology to the field of biomaterials science and increase accessibility to readers with a new interest in mRNA-LNP vaccines. We also highlight current limitations and future outlook of the mRNA vaccine technology that need further efforts of biomaterials scientists to address.


Subject(s)
COVID-19 , Communicable Diseases , Influenza Vaccines , Influenza, Human , Nanoparticles , COVID-19 Vaccines , Humans , Lipids , RNA, Messenger/genetics , SARS-CoV-2
6.
Nat Commun ; 12(1): 3721, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140497

ABSTRACT

Cytosolic transport is an essential requirement but a major obstacle to efficient delivery of therapeutic peptides, proteins and nucleic acids. Current understanding of cytosolic delivery mechanisms remains limited due to a significant number of conflicting reports, which are compounded by low sensitivity and indirect assays. To resolve this, we develop a highly sensitive Split Luciferase Endosomal Escape Quantification (SLEEQ) assay to probe mechanisms of cytosolic delivery. We apply SLEEQ to evaluate the cytosolic delivery of a range of widely studied cell-penetrating peptides (CPPs) fused to a model protein. We demonstrate that positively charged CPPs enhance cytosolic delivery as a result of increased non-specific cell membrane association, rather than increased endosomal escape efficiency. These findings transform our current understanding of how CPPs increase cytosolic delivery. SLEEQ is a powerful tool that addresses fundamental questions in intracellular drug delivery and will significantly improve the way materials are engineered to increase therapeutic delivery to the cytosol.


Subject(s)
Cell Membrane/metabolism , Cell-Penetrating Peptides/metabolism , Cytosol/metabolism , Endosomes/metabolism , Luminescent Measurements/methods , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression , Green Fluorescent Proteins/metabolism , Humans , Luciferases/chemistry , Mass Spectrometry , Recombinant Proteins , Sensitivity and Specificity
7.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804953

ABSTRACT

Adenoviruses contain dsDNA covalently linked to a terminal protein (TP) at the 5'end. TP plays a pivotal role in replication and long-lasting infectivity. TP has been reported to contain a nuclear localisation signal (NLS) that facilitates its import into the nucleus. We studied the potential NLS motifs within TP using molecular and cellular biology techniques to identify the motifs needed for optimum nuclear import. We used confocal imaging microscopy to monitor the localisation and nuclear association of GFP fusion proteins. We identified two nuclear localisation signals, PV(R)6VP and MRRRR, that are essential for fully efficient TP nuclear entry in transfected cells. To study TP-host interactions further, we expressed TP in Escherichia coli (E. coli). Nuclear uptake of purified protein was determined in digitonin-permeabilised cells. The data confirmed that nuclear uptake of TP requires active transport using energy and shuttling factors. This mechanism of nuclear transport was confirmed when expressed TP was microinjected into living cells. Finally, we uncovered the nature of TP binding to host nuclear shuttling proteins, revealing selective binding to Imp ß, and a complex of Imp α/ß but not Imp α alone. TP translocation to the nucleus could be inhibited using selective inhibitors of importins. Our results show that the bipartite NLS is required for fully efficient TP entry into the nucleus and suggest that this translocation can be carried out by binding to Imp ß or Imp α/ß. This work forms the biochemical foundation for future work determining the involvement of TP in nuclear delivery of adenovirus DNA.


Subject(s)
Adenoviridae/physiology , Cell Nucleus/metabolism , Nuclear Localization Signals/genetics , Viral Proteins/chemistry , Active Transport, Cell Nucleus , Cytosol/metabolism , DNA/chemistry , Escherichia coli/metabolism , Genome, Viral , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Microscopy, Confocal , Protein Binding , alpha Karyopherins/metabolism , beta Karyopherins/metabolism
8.
Bioorg Med Chem ; 29: 115906, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33310547

ABSTRACT

Inhibitors of protein-protein interactions can be developed through a number of technologies to provide leads that include cell-impermeable molecules. Redesign of these impermeable leads to provide cell-permeable derivatives can be challenging and costly. We hypothesised that intracellular toxicity of leads could be assessed by microinjection prior to investing in the redesign process. We demonstrate this approach for our development of inhibitors of the protein-protein interaction between inducible nitric-oxide synthase (iNOS) and SPRY domain-containing SOCS box proteins (SPSBs). We microinjected a lead molecule into AD-293 cells and were able to perform an intracellular toxicity assessment. We also investigated the intracellular distribution and localisation of injected inhibitor using a fluorescently-labelled analogue. Our findings show that a lead peptide inhibitor, CP2, had no toxicity even at intracellular concentrations four orders of magnitude higher than its Kd for binding to SPSB2. This early toxicity assessment justifies further development of this cell-impermeable lead to confer cell permeability. Our investigation highlights the utility of microinjection as a tool for assessing toxicity during development of drugs targeting protein-protein interactions.


Subject(s)
Cytoplasm/metabolism , Enzyme Inhibitors/chemistry , Nitric Oxide Synthase Type II/metabolism , Peptides/chemistry , Suppressor of Cytokine Signaling Proteins/metabolism , Amino Acid Sequence , Cell Line , Cell Membrane Permeability , Cytoplasm/ultrastructure , Drug Development , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Humans , Microinjections , Models, Molecular , Optical Imaging , Peptides/administration & dosage , Peptides/adverse effects , Protein Binding , Structure-Activity Relationship
9.
Pharmaceutics ; 12(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182382

ABSTRACT

Targeted delivery of nucleic acids to lymph nodes is critical for the development of effective vaccines and immunotherapies. However, it remains challenging to achieve selective lymph node delivery. Current gene delivery systems target mainly to the liver and typically exhibit off-target transfection at various tissues. Here we report novel lipid nanoparticles (LNPs) that can deliver plasmid DNA (pDNA) to a draining lymph node, thereby significantly enhancing transfection at this target organ, and substantially reducing gene expression at the intramuscular injection site (muscle). In particular, we discovered that LNPs stabilized by 3% Tween 20, a surfactant with a branched poly(ethylene glycol) (PEG) chain linking to a short lipid tail, achieved highly specific transfection at the lymph node. This was in contrast to conventional LNPs stabilized with a linear PEG chain and two saturated lipid tails (PEG-DSPE) that predominately transfected at the injection site (muscle). Interestingly, replacing Tween 20 with Tween 80, which has a longer unsaturated lipid tail, led to a much lower transfection efficiency. Our work demonstrates the importance of PEGylation in selective organ targeting of nanoparticles, provides new insights into the structure-property relationship of LNPs, and offers a novel, simple, and practical PEGylation technology to prepare the next generation of safe and effective vaccines against viruses or tumours.

SELECTION OF CITATIONS
SEARCH DETAIL
...