Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(39): e2304513120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37725643

ABSTRACT

Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Nitrates/pharmacology , Phytochrome B , Arabidopsis/genetics , Indoleacetic Acids , Nitrate Transporters , RNA , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics
2.
Plant Physiol ; 191(2): 1036-1051, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36423226

ABSTRACT

Plants undergo transcriptome reprograming to adapt to daily and seasonal fluctuations in light and temperature conditions. While most efforts have focused on the role of master transcription factors, the importance of splicing factors modulating these processes is now emerging. Efficient pre-mRNA splicing depends on proper spliceosome assembly, which in plants and animals requires the methylosome complex. Ion Chloride nucleotide-sensitive protein (PICLN) is part of the methylosome complex in both humans and Arabidopsis (Arabidopsis thaliana), and we show here that the human PICLN ortholog rescues phenotypes of Arabidopsis picln mutants. Altered photomorphogenic and photoperiodic responses in Arabidopsis picln mutants are associated with changes in pre-mRNA splicing that partially overlap with those in PROTEIN ARGININE METHYL TRANSFERASE5 (prmt5) mutants. Mammalian PICLN also acts in concert with the Survival Motor Neuron (SMN) complex component GEMIN2 to modulate the late steps of UsnRNP assembly, and many alternative splicing events regulated by PICLN but not PRMT5, the main protein of the methylosome, are controlled by Arabidopsis GEMIN2. As with GEMIN2 and SM PROTEIN E1/PORCUPINE (SME1/PCP), low temperature, which increases PICLN expression, aggravates morphological and molecular defects of picln mutants. Taken together, these results establish a key role for PICLN in the regulation of pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Animals , Alternative Splicing/genetics , Arabidopsis/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Temperature , RNA Splicing/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mammals/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
3.
Dev Cell ; 57(16): 2009-2025.e6, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35901789

ABSTRACT

Under adverse conditions such as shade or elevated temperatures, cotyledon expansion is reduced and hypocotyl growth is promoted to optimize plant architecture. The mechanisms underlying the repression of cotyledon cell expansion remain unknown. Here, we report that the nuclear abundance of the BES1 transcription factor decreased in the cotyledons and increased in the hypocotyl in Arabidopsis thaliana under shade or warmth. Brassinosteroid levels did not follow the same trend. PIF4 and COP1 increased their nuclear abundance in both organs under shade or warmth. PIF4 directly bound the BES1 promoter to enhance its activity but indirectly reduced BES1 expression. COP1 physically interacted with the BES1 protein, promoting its proteasome degradation in the cotyledons. COP1 had the opposite effect in the hypocotyl, demonstrating organ-specific regulatory networks. Our work indicates that shade or warmth reduces BES1 activity by transcriptional and post-translational regulation to inhibit cotyledon cell expansion.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Hypocotyl/metabolism
4.
Plant Physiol ; 178(1): 163-173, 2018 09.
Article in English | MEDLINE | ID: mdl-30068539

ABSTRACT

Agricultural crops are exposed to a range of daylengths, which act as important environmental cues for the control of developmental processes such as flowering. To explore the additional effects of daylength on plant function, we investigated the transcriptome of Arabidopsis (Arabidopsis thaliana) plants grown under short days (SD) and transferred to long days (LD). Compared with that under SD, the LD transcriptome was enriched in genes involved in jasmonic acid-dependent systemic resistance. Many of these genes exhibited impaired expression induction under LD in the phytochrome A (phyA), cryptochrome 1 (cry1), and cry2 triple photoreceptor mutant. Compared with that under SD, LD enhanced plant resistance to the necrotrophic fungus Botrytis cinerea This response was reduced in the phyA cry1 cry2 triple mutant, in the constitutive photomorphogenic1 (cop1) mutant, in the myc2 mutant, and in mutants impaired in DELLA function. Plants grown under SD had an increased nuclear abundance of COP1 and decreased DELLA abundance, the latter of which was dependent on COP1. We conclude that growth under LD enhances plant defense by reducing COP1 activity and enhancing DELLA abundance and MYC2 expression.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/metabolism , Light , Oxylipins/metabolism , Photoperiod , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Botrytis/physiology , Cryptochromes/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/radiation effects , Mutation , Phytochrome A/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plants, Genetically Modified , Transcriptome/radiation effects , Ubiquitin-Protein Ligases/genetics
5.
J Exp Bot ; 69(3): 619-631, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29309650

ABSTRACT

The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Flowers/growth & development , Gene Expression Regulation, Plant , Gibberellins/metabolism , Nitrates/metabolism , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Signal Transduction , Transcription Factors/metabolism
6.
Nat Commun ; 6: 6202, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25656233

ABSTRACT

In response to canopy shade, plant vegetative structures elongate to gain access to light. However, the mechanism that allows a plastic transcriptional response to canopy shade light is not fully elucidated. Here we propose that the activity of PIF4, a key transcription factor in the shade signalling network, is modulated by the interplay between the BBX24 transcriptional regulator and DELLA proteins, which are negative regulators of the gibberellin (GA) signalling pathway. We show that GA-related targets are enriched among genes responsive to BBX24 under shade and that the shade-response defect in bbx24 mutants is rescued by a GA treatment that promotes DELLA degradation. BBX24 physically interacts with DELLA proteins and alleviates DELLA-mediated repression of PIF4 activity. The proposed molecular mechanism provides reversible regulation of the activity of a key transcription factor that may prove especially relevant under fluctuating light conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Repressor Proteins/metabolism , Trans-Activators/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/radiation effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Genes, Plant , Gibberellins/pharmacology , Hypocotyl/anatomy & histology , Hypocotyl/drug effects , Hypocotyl/radiation effects , Light , Models, Biological , Mutation/genetics , Picloram/pharmacology , Plant Growth Regulators/pharmacology , Protein Binding/drug effects , Protein Binding/radiation effects , Nicotiana/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL