Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Diagnostics (Basel) ; 14(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928629

ABSTRACT

Deep learning has attained state-of-the-art results in general image segmentation problems; however, it requires a substantial number of annotated images to achieve the desired outcomes. In the medical field, the availability of annotated images is often limited. To address this challenge, few-shot learning techniques have been successfully adapted to rapidly generalize to new tasks with only a few samples, leveraging prior knowledge. In this paper, we employ a gradient-based method known as Model-Agnostic Meta-Learning (MAML) for medical image segmentation. MAML is a meta-learning algorithm that quickly adapts to new tasks by updating a model's parameters based on a limited set of training samples. Additionally, we use an enhanced 3D U-Net as the foundational network for our models. The enhanced 3D U-Net is a convolutional neural network specifically designed for medical image segmentation. We evaluate our approach on the TotalSegmentator dataset, considering a few annotated images for four tasks: liver, spleen, right kidney, and left kidney. The results demonstrate that our approach facilitates rapid adaptation to new tasks using only a few annotated images. In 10-shot settings, our approach achieved mean dice coefficients of 93.70%, 85.98%, 81.20%, and 89.58% for liver, spleen, right kidney, and left kidney segmentation, respectively. In five-shot sittings, the approach attained mean Dice coefficients of 90.27%, 83.89%, 77.53%, and 87.01% for liver, spleen, right kidney, and left kidney segmentation, respectively. Finally, we assess the effectiveness of our proposed approach on a dataset collected from a local hospital. Employing five-shot sittings, we achieve mean Dice coefficients of 90.62%, 79.86%, 79.87%, and 78.21% for liver, spleen, right kidney, and left kidney segmentation, respectively.

3.
Front Comput Neurosci ; 18: 1418546, 2024.
Article in English | MEDLINE | ID: mdl-38933391

ABSTRACT

Background: The necessity of prompt and accurate brain tumor diagnosis is unquestionable for optimizing treatment strategies and patient prognoses. Traditional reliance on Magnetic Resonance Imaging (MRI) analysis, contingent upon expert interpretation, grapples with challenges such as time-intensive processes and susceptibility to human error. Objective: This research presents a novel Convolutional Neural Network (CNN) architecture designed to enhance the accuracy and efficiency of brain tumor detection in MRI scans. Methods: The dataset used in the study comprises 7,023 brain MRI images from figshare, SARTAJ, and Br35H, categorized into glioma, meningioma, no tumor, and pituitary classes, with a CNN-based multi-task classification model employed for tumor detection, classification, and location identification. Our methodology focused on multi-task classification using a single CNN model for various brain MRI classification tasks, including tumor detection, classification based on grade and type, and tumor location identification. Results: The proposed CNN model incorporates advanced feature extraction capabilities and deep learning optimization techniques, culminating in a groundbreaking paradigm shift in automated brain MRI analysis. With an exceptional tumor classification accuracy of 99%, our method surpasses current methodologies, demonstrating the remarkable potential of deep learning in medical applications. Conclusion: This study represents a significant advancement in the early detection and treatment planning of brain tumors, offering a more efficient and accurate alternative to traditional MRI analysis methods.

4.
BMC Med Imaging ; 24(1): 110, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750436

ABSTRACT

Brain tumor classification using MRI images is a crucial yet challenging task in medical imaging. Accurate diagnosis is vital for effective treatment planning but is often hindered by the complex nature of tumor morphology and variations in imaging. Traditional methodologies primarily rely on manual interpretation of MRI images, supplemented by conventional machine learning techniques. These approaches often lack the robustness and scalability needed for precise and automated tumor classification. The major limitations include a high degree of manual intervention, potential for human error, limited ability to handle large datasets, and lack of generalizability to diverse tumor types and imaging conditions.To address these challenges, we propose a federated learning-based deep learning model that leverages the power of Convolutional Neural Networks (CNN) for automated and accurate brain tumor classification. This innovative approach not only emphasizes the use of a modified VGG16 architecture optimized for brain MRI images but also highlights the significance of federated learning and transfer learning in the medical imaging domain. Federated learning enables decentralized model training across multiple clients without compromising data privacy, addressing the critical need for confidentiality in medical data handling. This model architecture benefits from the transfer learning technique by utilizing a pre-trained CNN, which significantly enhances its ability to classify brain tumors accurately by leveraging knowledge gained from vast and diverse datasets.Our model is trained on a diverse dataset combining figshare, SARTAJ, and Br35H datasets, employing a federated learning approach for decentralized, privacy-preserving model training. The adoption of transfer learning further bolsters the model's performance, making it adept at handling the intricate variations in MRI images associated with different types of brain tumors. The model demonstrates high precision (0.99 for glioma, 0.95 for meningioma, 1.00 for no tumor, and 0.98 for pituitary), recall, and F1-scores in classification, outperforming existing methods. The overall accuracy stands at 98%, showcasing the model's efficacy in classifying various tumor types accurately, thus highlighting the transformative potential of federated learning and transfer learning in enhancing brain tumor classification using MRI images.


Subject(s)
Brain Neoplasms , Deep Learning , Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/classification , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Machine Learning , Image Interpretation, Computer-Assisted/methods
5.
Diagnostics (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37998597

ABSTRACT

One of the most prevalent cancers is oral squamous cell carcinoma, and preventing mortality from this disease primarily depends on early detection. Clinicians will greatly benefit from automated diagnostic techniques that analyze a patient's histopathology images to identify abnormal oral lesions. A deep learning framework was designed with an intermediate layer between feature extraction layers and classification layers for classifying the histopathological images into two categories, namely, normal and oral squamous cell carcinoma. The intermediate layer is constructed using the proposed swarm intelligence technique called the Modified Gorilla Troops Optimizer. While there are many optimization algorithms used in the literature for feature selection, weight updating, and optimal parameter identification in deep learning models, this work focuses on using optimization algorithms as an intermediate layer to convert extracted features into features that are better suited for classification. Three datasets comprising 2784 normal and 3632 oral squamous cell carcinoma subjects are considered in this work. Three popular CNN architectures, namely, InceptionV2, MobileNetV3, and EfficientNetB3, are investigated as feature extraction layers. Two fully connected Neural Network layers, batch normalization, and dropout are used as classification layers. With the best accuracy of 0.89 among the examined feature extraction models, MobileNetV3 exhibits good performance. This accuracy is increased to 0.95 when the suggested Modified Gorilla Troops Optimizer is used as an intermediary layer.

6.
Diagnostics (Basel) ; 13(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37998620

ABSTRACT

According to the WHO (World Health Organization), lung cancer is the leading cause of cancer deaths globally. In the future, more than 2.2 million people will be diagnosed with lung cancer worldwide, making up 11.4% of every primary cause of cancer. Furthermore, lung cancer is expected to be the biggest driver of cancer-related mortality worldwide in 2020, with an estimated 1.8 million fatalities. Statistics on lung cancer rates are not uniform among geographic areas, demographic subgroups, or age groups. The chance of an effective treatment outcome and the likelihood of patient survival can be greatly improved with the early identification of lung cancer. Lung cancer identification in medical pictures like CT scans and MRIs is an area where deep learning (DL) algorithms have shown a lot of potential. This study uses the Hybridized Faster R-CNN (HFRCNN) to identify lung cancer at an early stage. Among the numerous uses for which faster R-CNN has been put to good use is identifying critical entities in medical imagery, such as MRIs and CT scans. Many research investigations in recent years have examined the use of various techniques to detect lung nodules (possible indicators of lung cancer) in scanned images, which may help in the early identification of lung cancer. One such model is HFRCNN, a two-stage, region-based entity detector. It begins by generating a collection of proposed regions, which are subsequently classified and refined with the aid of a convolutional neural network (CNN). A distinct dataset is used in the model's training process, producing valuable outcomes. More than a 97% detection accuracy was achieved with the suggested model, making it far more accurate than several previously announced methods.

7.
Front Med (Lausanne) ; 10: 1349336, 2023.
Article in English | MEDLINE | ID: mdl-38348235

ABSTRACT

Introduction: Oral Squamous Cell Carcinoma (OSCC) poses a significant challenge in oncology due to the absence of precise diagnostic tools, leading to delays in identifying the condition. Current diagnostic methods for OSCC have limitations in accuracy and efficiency, highlighting the need for more reliable approaches. This study aims to explore the discriminative potential of histopathological images of oral epithelium and OSCC. By utilizing a database containing 1224 images from 230 patients, captured at varying magnifications and publicly available, a customized deep learning model based on EfficientNetB3 was developed. The model's objective was to differentiate between normal epithelium and OSCC tissues by employing advanced techniques such as data augmentation, regularization, and optimization. Methods: The research utilized a histopathological imaging database for Oral Cancer analysis, incorporating 1224 images from 230 patients. These images, taken at various magnifications, formed the basis for training a specialized deep learning model built upon the EfficientNetB3 architecture. The model underwent training to distinguish between normal epithelium and OSCC tissues, employing sophisticated methodologies including data augmentation, regularization techniques, and optimization strategies. Results: The customized deep learning model achieved significant success, showcasing a remarkable 99% accuracy when tested on the dataset. This high accuracy underscores the model's efficacy in effectively discerning between normal epithelium and OSCC tissues. Furthermore, the model exhibited impressive precision, recall, and F1-score metrics, reinforcing its potential as a robust diagnostic tool for OSCC. Discussion: This research demonstrates the promising potential of employing deep learning models to address the diagnostic challenges associated with OSCC. The model's ability to achieve a 99% accuracy rate on the test dataset signifies a considerable leap forward in earlier and more accurate detection of OSCC. Leveraging advanced techniques in machine learning, such as data augmentation and optimization, has shown promising results in improving patient outcomes through timely and precise identification of OSCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...