Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 12(21): 7294-7307, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-34163820

ABSTRACT

The ab initio nanoreactor has previously been introduced to automate reaction discovery for ground state chemistry. In this work, we present the nonadiabatic nanoreactor, an analogous framework for excited state reaction discovery. We automate the study of nonadiabatic decay mechanisms of molecules by probing the intersection seam between adiabatic electronic states with hyper-real metadynamics, sampling the branching plane for relevant conical intersections, and performing seam-constrained path searches. We illustrate the effectiveness of the nonadiabatic nanoreactor by applying it to benzene, a molecule with rich photochemistry and a wide array of photochemical products. Our study confirms the existence of several types of S0/S1 and S1/S2 conical intersections which mediate access to a variety of ground state stationary points. We elucidate the connections between conical intersection energy/topography and the resulting photoproduct distribution, which changes smoothly along seam space segments. The exploration is performed with minimal user input, and the protocol requires no previous knowledge of the photochemical behavior of a target molecule. We demonstrate that the nonadiabatic nanoreactor is a valuable tool for the automated exploration of photochemical reactions and their mechanisms.

2.
J Phys Chem B ; 125(16): 4120-4131, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33872018

ABSTRACT

UV-visible transient absorption spectroscopy and quantum mechanical simulations are combined to elucidate the photochemical mechanism of two metastable merocyanine/spiropyran photoacids, 2-[(E)-2-(2-hydroxyphenyl)ethenyl]-3,3-dimethyl-1-(3-sulfopropyl)-3H-indol-1-ium (phenylhydroxy-MCH) and 2-[(E)-2-(1H-indazol-7-yl)ethenyl]-3-(3-sulfopropyl)-1,3-benzothiazol-3-ium (indazole-MCH). Transient absorption spectra demonstrate that trans-acid isomerization to the cis form results in deprotonation on a picosecond time scale. Ring closure to form spiropyran follows promptly from the appropriate conformation or follows at longer time delays (≫3.5 ns) following a barrier crossing for single-bond isomerization to the appropriate conformation. Consistent with the results of Berton et al. [ Chem. Sci. 2020, 11, 8457-8468] , we find that cis-phenylhydroxy-MCH is a stronger acid than trans-phenylhydroxy-MCH. The decrease in pKa upon isomerization is further investigated to benchmark quantum chemical methods for their accuracy. Calculations were performed with nine levels of theory including continuum solvent models and explicit water. The calculations are not sufficient to describe the ΔpKa following isomerization of these photoacids, and more work is necessary to properly evaluate the physical basis for the acidity of the cis photoacids.

3.
J Phys Chem A ; 124(43): 8897-8906, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33064471

ABSTRACT

Direct irradiation of crystalline cis,cis-1,4-diphenyl-1,3-butadiene (cc-DPB) forms trans,trans-1,4-diphenyl-1,3,-butadiene via a concerted two-bond isomerization called the bicycle pedal (BP) mechanism. However, little is known about photoisomerization pathways in the solid state and there has been much debate surrounding the interpretation of volume-conserving isomerization mechanisms. The bicycle pedal photoisomerization is investigated using the quantum mechanics/molecular mechanics complete active space self-consistent field/Amber force-field method. Important details about how the steric environment influences isomerization mechanisms are revealed including how the one-bond flip and hula-twist mechanisms are suppressed by the crystal cavity, the nature of the seam space in steric environments, and the features of the bicycle pedal mechanism. Specifically, in the bicycle pedal, the phenyl rings of cc-DPB are locked in place and the intermolecular packing allows a passageway for rotation of the central diene in a volume-conserving manner. In contrast, the bicycle pedal rotation in the gas phase is not a stable pathway, so single-bond rotation mechanisms become operative instead. Furthermore, the crystal BP mechanism is an activated process that occurs completely on the excited state; the photoproduct can decay to the ground state through radiative and non-radiative pathways. The present models, however, do not capture the quantitative activation barriers, and more work is needed to better model reactions in crystals. Last, the reaction barriers of the different crystalline conformations within the unit cell of cc-DPB are compared to investigate the possibility for conformation-dependent isomerization. Although some difference in reaction barriers is observed, the difference is most likely not responsible for the experimentally observed periods of fast and slow conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...