Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Am J Trop Med Hyg ; 97(5): 1540-1550, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28820709

ABSTRACT

Sensitive field-deployable diagnostic tests can assist malaria programs in achieving elimination. The performance of a new Alere™ Malaria Ag P.f Ultra Sensitive rapid diagnostic test (uRDT) was compared with the currently available SD Bioline Malaria Ag P.f RDT in blood specimens from asymptomatic individuals in Nagongera, Uganda, and in a Karen Village, Myanmar, representative of high- and low-transmission areas, respectively, as well as in pretreatment specimens from study participants from four Plasmodium falciparum-induced blood-stage malaria (IBSM) studies. A quantitative reverse transcription PCR (qRT-PCR) and a highly sensitive enzyme-linked immunosorbent assay (ELISA) test for histidine-rich protein II (HRP2) were used as reference assays. The uRDT showed a greater than 10-fold lower limit of detection for HRP2 compared with the RDT. The sensitivity of the uRDT was 84% and 44% against qRT-PCR in Uganda and Myanmar, respectively, and that of the RDT was 62% and 0% for the same two sites. The specificities of the uRDT were 92% and 99.8% against qRT-PCR for Uganda and Myanmar, respectively, and 99% and 99.8% against the HRP2 reference ELISA. The RDT had specificities of 95% and 100% against qRT-PCR for Uganda and Myanmar, respectively, and 96% and 100% against the HRP2 reference ELISA. The uRDT detected new infections in IBSM study participants 1.5 days sooner than the RDT. The uRDT has the same workflow as currently available RDTs, but improved performance characteristics to identify asymptomatic malaria infections. The uRDT may be a useful tool for malaria elimination strategies.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Antigens, Protozoan/blood , Child , Child, Preschool , Diagnostic Tests, Routine , Enzyme-Linked Immunosorbent Assay , Humans , Infant , Myanmar/epidemiology , Plasmodium falciparum , Protozoan Proteins/blood , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling , Uganda/epidemiology
3.
Biochemistry ; 50(20): 4322-9, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21539296

ABSTRACT

Diseases associated with the misfolding of endogenous proteins, such as Alzheimer's disease and type II diabetes, are becoming increasingly prevalent. The pathophysiology of these diseases is not totally understood, but mounting evidence suggests that the misfolded protein aggregates themselves may be toxic to cells and serve as key mediators of cell death. As such, an assay that can detect aggregates in a sensitive and selective fashion could provide the basis for early detection of disease, before cellular damage occurs. Here we report the evolution of a reagent that can selectively capture diverse misfolded proteins by interacting with a common supramolecular feature of protein aggregates. By coupling this enrichment tool with protein specific immunoassays, diverse misfolded proteins and sub-femtomole amounts of oligomeric aggregates can be detected in complex biological matrices. We anticipate that this near-universal approach for quantitative misfolded protein detection will become a useful research tool for better understanding amyloidogenic protein pathology as well as serve as the basis for early detection of misfolded protein diseases.


Subject(s)
Amyloid/chemistry , Protein Folding , Proteostasis Deficiencies/diagnosis , Amyloid/metabolism , Early Diagnosis , Humans , Indicators and Reagents/chemistry , Indicators and Reagents/metabolism , Molecular Weight , Peptoids/chemistry , Peptoids/metabolism , Protein Multimerization , Protein Structure, Secondary
4.
PLoS One ; 5(12): e15725, 2010 Dec 30.
Article in English | MEDLINE | ID: mdl-21209907

ABSTRACT

Alzheimer's Disease (AD) is the most prevalent form of dementia worldwide, yet the development of therapeutics has been hampered by the absence of suitable biomarkers to diagnose the disease in its early stages prior to the formation of amyloid plaques and the occurrence of irreversible neuronal damage. Since oligomeric Aß species have been implicated in the pathophysiology of AD, we reasoned that they may correlate with the onset of disease. As such, we have developed a novel misfolded protein assay for the detection of soluble oligomers composed of Aß x-40 and x-42 peptide (hereafter Aß40 and Aß42) from cerebrospinal fluid (CSF). Preliminary validation of this assay with 36 clinical samples demonstrated the presence of aggregated Aß40 in the CSF of AD patients. Together with measurements of total Aß42, diagnostic sensitivity and specificity greater than 95% and 90%, respectively, were achieved. Although larger sample populations will be needed to confirm this diagnostic sensitivity, our studies demonstrate a sensitive method of detecting circulating Aß40 oligomers from AD CSF and suggest that these oligomers could be a powerful new biomarker for the early detection of AD.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism , Gene Expression Regulation , Peptide Fragments/metabolism , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Brain/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/chemistry , Humans , Middle Aged , Models, Chemical , Molecular Conformation , Peptide Fragments/cerebrospinal fluid , Peptides/chemistry , Protein Conformation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL