Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Phys Chem Chem Phys ; 26(11): 8734-8747, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38416412

Characterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe3)2]3, a prototypical example, which contains notable structural features according to X-ray crystallography. Each of these techniques revealed specific information about the geometry and electronic structure of the complex. Taken together, both EPR and NMR, augmented by quantum chemical calculations, provide a detailed and complementary understanding of such paramagnetic compounds. In particular, the EPR and NMR signatures point to the presence of three-centre-two-electron Yb-γ-Me-ß-Si secondary metal-ligand interactions in this otherwise tri-coordinate metal complex, similarly to its diamagnetic Lu analogues. The electronic structure of Yb(III) can be described as a single 4f13 configuration, while an unusually large crystal-field splitting results in a thermally isolated ground Kramers doublet. Furthermore, the computational data indicate that the Yb-carbon bond contains some π-character, reminiscent of the so-called α-H agostic interaction.

2.
Chem Sci ; 12(2): 780-792, 2020 Nov 11.
Article En | MEDLINE | ID: mdl-34163812

While Ti(iii) alkyl species are the proposed active sites in Ziegler-Natta ethylene polymerization catalysts, the corresponding well-defined homogeneous catalysts are not known. We report that well-defined neutral ß-diiminato Ti(iii) alkyl species, namely [Ti(nacnac)(CH2 t Bu)2] and its alumina-grafted derivative [(AlsO)Ti(nacnac)(CH2 t Bu)], are active towards ethylene polymerization at moderate pressures and temperatures and possess an electron configuration well-adapted to insertion of ethylene. Advanced EPR spectroscopy showed that ethylene insertion into a Ti(iii)-C bond takes place during polymerization from Ti(nacnac)(CH2 t Bu)2. A combination of pulsed EPR spectroscopy and DFT calculations, based on a crystal structure of [Ti(nacnac)(CH2 t Bu)2], enabled us to reveal details about the structure and electronic configurations of both molecular and surface-grafted species. For both compounds, the α-agostic C-H interaction, which involves the singly occupied molecular orbital, indicates a π character of the metal-carbon bond; this π character is enhanced upon ethylene coordination, leading to a nearly barrier-less C2H4 insertion into Ti(iii)-C bonds after this first step. During coordination, back donation from the SOMO to the π*(C2H4) occurs, leading to stabilization of π-ethylene complexes and to a significant lowering of the overall energy of the C2H4 insertion transition state. In d1 alkyl complexes, ethylene insertion follows an original "augmented" Cossee-Arlman mechanism that involves the delocalization of unpaired electrons between the SOMO, π*(C2H4) and σ*(Ti-C) in the transition state, which further favors ethylene insertion. All these factors facilitate ethylene polymerization on Ti(iii) neutral alkyl species and make d1 alkyl complexes potentially more effective polymerization catalysts than their d0 analogues.

3.
Chem Sci ; 10(25): 6362-6367, 2019 Jul 07.
Article En | MEDLINE | ID: mdl-31341592

Coordinatively unsaturated Mo(iii) complexes have been identified as highly reactive species able to activate dinitrogen without the need for a sacrificial reducing agent. Here, we report a coordinatively saturated octahedral Mo(iii) complex stabilized by κ2-tris(tert-butoxy)silanolate ligands, which is yet highly reactive towards dinitrogen and small molecules. The combined high stability and activity are ascribed to the dual binding mode of the tris(tert-butoxy)silanolate ligands that allow unlocking a coordination site in the presence of reactive small molecules to promote their activation at low temperatures.

4.
J Am Chem Soc ; 140(36): 11395-11401, 2018 09 12.
Article En | MEDLINE | ID: mdl-30110534

In alkene metathesis, while group 6 (Mo or W) high-oxidation state alkylidenes are accepted to be key reaction intermediates for both homogeneous and heterogeneous catalysts, it has been proposed that low valent species in their +4 oxidation state can serve as precatalysts. However, the activation mechanism for these latter species-generating alkylidenes-is still an open question. Here, we report the syntheses of tungsten(IV)-oxo bisalkoxide molecular complexes stabilized by pyridine ligands, WO(OR)2py3 (R = CMe(CF3)2 (2a), R = Si(O tBu)3 (2b), and R = C(CF3)3 (2c); py = pyridine), and show that upon activation with B(C6F5)3 they display alkene metathesis activities comparable to W(VI)-oxo alkylidenes. The initiation mechanism is examined by kinetic, isotope labeling and computational studies. Experimental evidence reveals that the presence of an allylic CH group in the alkene reactant is crucial for initiating alkene metathesis. Deuterium labeling of the allylic C-H group shows a primary kinetic isotope effect on the rate of initiation. DFT calculations support the formation of an allyl hydride intermediate via activation of the allylic C-H bond and show that formation of the metallacyclobutane from the allyl "hydride" involves a proton transfer facilitated by the coordination of a Lewis acid (B(C6F5)3) and assisted by a Lewis base (pyridine). This proton transfer step is rate determining and yields the metathesis active species.

5.
Angew Chem Int Ed Engl ; 57(44): 14533-14537, 2018 10 26.
Article En | MEDLINE | ID: mdl-29949230

The structure of paramagnetic surface species is notoriously difficult to determine. For TiIII centers related to Ziegler-Natta catalysis, we demonstrate here that detailed structural information can be obtained by advanced EPR spectroscopy and DFT computations, benchmarked on molecular analogs. The hyperfine sublevel correlation (HYSCORE) spectra obtained after reaction with 13 C-labeled ethylene provides information about the coupling with a proton in the first coordination sphere of TiIII as well as significant 13 C hyperfine coupling and thereby allows structural assignment of the surface species.

6.
Angew Chem Int Ed Engl ; 57(34): 10879-10882, 2018 Aug 20.
Article En | MEDLINE | ID: mdl-29902359

Grafting Ti(=NtBu)(Me2 Pyr)2 (py)2 (Me2 Pyr= 2,5-dimethylpyrrolyl, py=pyridine) onto the surface of silica partially dehydroxylated at 700 °C gives the well-defined silica-supported Ti imido complex (≡SiO)Ti(=NtBu)(Me2 Pyr)(py)2 , which is fully characterized by IR and solid-state NMR spectroscopy as well as elemental and mass balance analyses. While stoichiometric imido-transfer reactivity is typical for Ti imides, the obtained surface complex is unique in that it enables catalytic transformations involving Ti imido and oxo intermediates. In particular, it efficiently catalyzes imidation of carbonyl compounds with N-sulfinylamines by oxo/imido heterometathesis.

7.
Angew Chem Int Ed Engl ; 57(13): 3431-3434, 2018 03 19.
Article En | MEDLINE | ID: mdl-29377403

Designing highly active supported ethylene polymerization catalysts that do not require a co-catalyst to generate electrophilic metal alkyl species is still a challenge despite its industrial relevance. Described herein is the synthesis and characterization of well-defined silica-supported cyclopentadienyl LnII sites (Ln=Yb and Sm) of general formula [(≡SiO)LnCp*]. These well-defined surface species are highly activite towards ethylene polymerization in the absence of added co-catalyst. Initiation is proposed to occur by single electron transfer.

8.
Angew Chem Int Ed Engl ; 57(22): 6398-6440, 2018 05 28.
Article En | MEDLINE | ID: mdl-28685920

Many industrial catalysts contain isolated metal sites on the surface of oxide supports. Although such catalysts have been used in a broad range of processes for more than 40 years, there is often a very limited understanding about the structure of the catalytically active sites. This Review discusses how surface organometallic chemistry (SOMC) engineers surface sites with well-defined structures and provides insight into the nature of the active sites of industrial catalysts; the Review focuses in particular on olefin production and conversion processes.

9.
ACS Cent Sci ; 3(7): 759-768, 2017 Jul 26.
Article En | MEDLINE | ID: mdl-28776018

Metallacyclobutanes are an important class of organometallic intermediates, due to their role in olefin metathesis. They can have either planar or puckered rings associated with characteristic chemical and physical properties. Metathesis active metallacyclobutanes have short M-Cα/α' and M···Cß distances, long Cα/α'-Cß bond length, and isotropic 13C chemical shifts for both early d0 and late d4 transition metal compounds for the α- and ß-carbons appearing at ca. 100 and 0 ppm, respectively. Metallacyclobutanes that do not show metathesis activity have 13C chemical shifts of the α- and ß-carbons at typically 40 and 30 ppm, respectively, for d0 systems, with upfield shifts to ca. -30 ppm for the α-carbon of metallacycles with higher d n electron counts (n = 2 and 6). Measurements of the chemical shift tensor by solid-state NMR combined with an orbital (natural chemical shift, NCS) analysis of its principal components (δ11 ≥ δ22 ≥ δ33) with two-component calculations show that the specific chemical shift of metathesis active metallacyclobutanes originates from a low-lying empty orbital lying in the plane of the metallacyclobutane with local π*(M-Cα/α') character. Thus, in the metathesis active metallacyclobutanes, the α-carbons retain some residual alkylidene character, while their ß-carbon is shielded, especially in the direction perpendicular to the ring. Overall, the chemical shift tensors directly provide information on the predictive value about the ability of metallacyclobutanes to be olefin metathesis intermediates.

10.
ACS Cent Sci ; 3(3): 244-249, 2017 Mar 22.
Article En | MEDLINE | ID: mdl-28386602

Achieving magnetic remanence at single isolated metal sites dispersed at the surface of a solid matrix has been envisioned as a key step toward information storage and processing in the smallest unit of matter. Here, we show that isolated Dy(III) sites distributed at the surface of silica nanoparticles, prepared with a simple and scalable two-step process, show magnetic remanence and display a hysteresis loop open at liquid 4He temperature, in contrast to the molecular precursor which does not display any magnetic memory. This singular behavior is achieved through the controlled grafting of a tailored Dy(III) siloxide complex on partially dehydroxylated silica nanoparticles followed by thermal annealing. This approach allows control of the density and the structure of isolated, "bare" Dy(III) sites bound to the silica surface. During the process, all organic fragments are removed, leaving the surface as the sole ligand, promoting magnetic remanence.

11.
J Am Chem Soc ; 138(45): 14987-14997, 2016 11 16.
Article En | MEDLINE | ID: mdl-27766836

The activation and conversion of hydrocarbons is one of the most important challenges in chemistry. Transition-metal ions (V, Cr, Fe, Co, etc.) isolated on silica surfaces are known to catalyze such processes. The mechanisms of these processes are currently unknown but are thought to involve C-H activation as the rate-determining step. Here, we synthesize well-defined Co(II) ions on a silica surface using a metal siloxide precursor followed by thermal treatment under vacuum at 500 °C. We show that these isolated Co(II) sites are catalysts for a number of hydrocarbon conversion reactions, such as the dehydrogenation of propane, the hydrogenation of propene, and the trimerization of terminal alkynes. We then investigate the mechanisms of these processes using kinetics, kinetic isotope effects, isotopic labeling experiments, parahydrogen induced polarization (PHIP) NMR, and comparison with a molecular analog. The data are consistent with all of these reactions occurring by a common mechanism, involving heterolytic C-H or H-H activation via a 1,2 addition across a Co-O bond.

...