ABSTRACT
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
ABSTRACT
There are no clinical interventions to prevent post-injury epilepsy, a common and devastating outcome after brain insults. Epileptogenic events that run from brain injury to epilepsy are poorly understood. Previous studies in our laboratory suggested Proechimys, an exotic Amazonian rodent, as resistant to acquired epilepsy development in post-status epilepticus models. The present comparative study was conducted to assess (1) stroke-related brain responses 24-h and 30 days after cortical photothrombosis and (2) post-stroke epilepsy between Proechimys rodents and Wistar rats, a traditional animal used for laboratory research. Proechimys group showed smaller volume of ischemic infarction and lesser glial activation than Wistar group. In contrast to Wistar rats, post-stroke decreased levels of pro-inflammatory cytokines and increased levels of anti-inflammatory mediators and growth factors were found in Proechimys. Electrophysiological signaling changes assessed by cortical spreading depression, in vitro and in vivo, showed that Wistar's brain is most severely affected by stroke. Chronic electrocorticographic recordings showed that injury did not lead to epilepsy in Proechimys whereas 88% of the Wistar rats developed post-stroke epilepsy. Science gains insights from comparative studies on diverse species. Proechimys rodents proved to be a useful animal model to study antiepileptogenic mechanisms after brain insults and complement conventional animal models.
Subject(s)
Epilepsy/metabolism , Rainforest , Status Epilepticus/metabolism , Stroke/metabolism , Animals , Rats , Rats, WistarABSTRACT
The spiny rat (Proechimys guyannensis) is a neotropical rodent that is used in biomedical research, particularly research related to chronic resistance to epilepsy and infectious diseases. To our knowledge, there are few reports concerning the reproductive biology of this species. Therefore, besides providing basic biometric and morphometric data, in the present study we investigated testis function and spermatogenesis in adult spiny rats. The mean testis weight and gonadosomatic index obtained were 1.63 ± 0.2 g and 1.15 ± 0.1% respectively. Based on the development of the acrosomic system, 12 stages of the seminiferous epithelium cycle were characterized. Stages VI and VII presented the highest frequencies (~17-19%), whilst stages II to V showed the lowest frequencies (~2-4%). The most advanced germ cell types labelled at 1 h or 20 days after BrdU injections were respectively preleptotene/leptotene spermatocytes at stage VII and elongated spermatids at stage III. The mean duration of one cycle was 7.5 ± 0.01 days and the entire spermatogenic process lasted 33.7 ± 0.06 days (~4.5 cycles). The seminiferous tubules (ST) occupied ~96 ± 1% of the testis parenchyma, whereas Leydig cells comprised only 1.5 ± 0.4%. The number of Sertoli cells (SC) per testis gram and the SC efficiency (spermatids/SC) were respectively 78 × 106 ± 11 × 106 and 7.9 ± 1. The daily sperm production per testis gram (spermatogenic efficiency; daily sperm production (DSP)/g/testis) was 78 × 106 ± 8 × 106. To our knowledge, this spermatogenic efficiency is among the highest found for mammals investigated to date and is probably related to the very short duration of spermatogenesis and the very high ST percentage and SC number obtained for this species.